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pEvolutionary Algorithms: Characteristics

EA are stochastic optimization algorithms

� Stochastic – but not random search,

� Use an analogy of natural evolution

− genetic inheritance (J.G. Mendel) – the basic principles of transference of hereditary fac-

tors from parent to offspring – genes, which present hereditary factors, are lined up on

chromosomes.

− strife for survival (Ch. Darwin) – the fundamental principle of natural selection – is the

process by which individual organisms with favorable traits are more likely to survive and

reproduce.

� Not fast in some sense – population-based algorithm,

� Robust – efficient in finding good solutions in difficult searches.
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pEA: Vocabulary

Vocabulary borrowed from natural genetics

� Individual (chromosome + its quality measure ”fitness value”) – a solution to a problem.

� Chromosome – entire representation of the solution.

� Fitness – quality measure assigned to an individual, expresses how well it is adapted to the

environment.

� Gene (also features, characters) – elementary units from which chromosomes are made.

− each gene is located at certain place of the chromosome called locus (pl. loci),

− a particular value for a locus is an allele.

example: the ”thickness” gene (which might be at locus 8) might be set to allele 2,

meaning its second-thinnest value.

� Genotype – what’s on the chromosome.

� Phenotype – what it means in the problem context (e.g., binary sequence may map to

integers or reals, or order of execution, etc.).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � GA & GP



pRepresentation

Problem can be represented as

� binary string –

� real-valued string –

� string of chars –

� or as a tree

� or as a graph, and others.
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pEvaluation Function

Objective (Fitness) function

� the only information about the sought solution the algorithm dispose of,

� must be defined for every possible chromosome.

Fitness function may be

� multimodal,

� discrete,

� multidimensional,

� nonlinear,

� noisy,

� multiobjective.

Fitness does not have to be define analytically

� simulation results,

� classification success rate.

Fitness function should not be too costly!!!
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pExample: Coding & Evaluation

Function optimization

� maximization of f (x, y) = x2 + y2,

� parameters x and y take on values from interval < 0, 31 >,

� and are code on 5 bits each.
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pEvolutionary Cycle
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pIdealized Illustration of Evolution

� Uniformly sampled population. � Population converged to promising regions.
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pInitialization

Random

� randomly generated solutions,

� no prior information about the shape of the sought solution,

� relies just on ”lucky” sampling of the whole search space by a finite set of samples.

Informed (pre-processing)

� (meta)heuristic routines used for seeding the initial population,

� biased random generator sampling regions of the search space that are likely to contain the

sought solutions,

+ may help to find better solutions,

+ may speed up the search process,

– may cause irreversible focusing of the search process on regions with local optima.
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pReproduction

Models nature’s survival-of-fittest principle

� prefers better individuals to the worse ones,

� still, every individual should have a chance to reproduce.

Roulette wheel

� probability of choosing some solution is di-

rectly proportional to its fitness value

Other methods

� Stochastic Universal Sampling,

� Tournament selection,

� Reminder Stochastic Sampling.
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pGenetic Operators: Crossover

Idea

� given two well-fit solutions to the given problem, it is possible to get a new solution by properly

mixing the two that is even better than both its parents.

Role of crossover

� sampling (exploration) of the search space

Example: 1-point crossover
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pGenetic Operators: Mutation

Role of mutation

� preservation of a population diversity,

� minimization of a possibility of loosing some important piece of genetic information.

Single bit-flipping mutation

Population
0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 0 0 0 1 0 1

. . .

0 1 0 0 1 1 0 1 0 0

Example of missing genetic information

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � GA & GP



pReplacement Strategy

Replacement strategy defines

� how big portion of the current generation will be replaced in each generation, and

� which solutions in the current population will be replaced by the newly generated ones.

Two extreme cases

� Generational – the whole old population is completely rebuild in each generation (analogy

of short-lived species).

� Steady-state – just a few individuals are replaced in each generation (analogy of longer-lived

species).
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pApplication Areas of Evolutionary Algorithms

EAs are popular for their

� simplicity,

� effectiveness,

� robustness.

Holland: ”It’s best used in areas where you don’t really have a good idea what the solution

might be. And it often surprises you with what you come up with.”

Applications

� control,

� engineering design,

� image processing,

� planning & scheduling,

� VLSI circuit design,

� network optimization & routing problems,

� optimal resource allocation,

� marketing,

� credit scoring & risk assessment,

� and many others.
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pMultiple Traveling Salesmen Problem

Rescue operations planning

� Given N cities and K agents, find an opti-

mal tour for each agent so that every city is

visited exactly once.

� A typical criterion to be optimized is the

overall time spent by the squad (i.e., the

slowest team member) during the task ex-

ecution.
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pArtificial Ant Problem

Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).
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pArtificial Ant Problem: GA Approach

Collins a Jefferson 1991, standard GA using binary representation

Representation

� strategy represented by finite state machine,

� table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 34-bit long chromosomes
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pArtificial Ant Problem: Example cont.

Ant behavior

� What happens if the ant hits an obstacle?

� What is strange with transition from state 10

to the initial state 00?

� When does the ant succeed?

� Is the number of states sufficient to solve the

problem?

� Do all of the possible 32-bit chromosomes

represent a feasible solution?
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pArtificial Ant Problem: GA result

Representation

� 32 states,

� 453 = 64× 7 + 5 bits !!!

Population size: 65.536 !!!

Number of generations: 200

Total number of samples tried: 13× 106 !!!
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pGenetic Programming (GP)

GP shares with GA the philosophy of survival and reproduction of the fittest and the analogy

of naturally occurring genetic operators.

GP differs from GA in a representation, genetic operators and a scope of applications.

GP is extension of the conventional GA in which the structures undergoing adaptation are

trees of dynamically varying size and shape representing hierarchical computer programs.

Applications

� learning programs,

� learning decision trees,

� learning rules,

� learning strategies,

� . . .
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pGP: Representation

All possible trees are composed of functions (inner nodes) and terminals (leaf nodes) appro-

priate to the problem domain

� Terminals – inputs to the programs (indepen-

dent variables), real, integer or logical constants,

actions.

� Functions

− arithmetic operators (+, -, *, / ),

− algebraic functions (sin, cos, exp, log),

− logical functions (AND, OR, NOT),

− conditional operators (If-Then-Else,

cond?true:false),

− and others.

Example: Tree representation of a LISP

S-expression 0.23 ∗ Z +X − 0.78

Closure – each of the functions should be able to accept, as its argument, any value that may

be returned by any function and any terminal.
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pGP Initialisation: Common Methods

GP needs a good tree-creation algorithm to create trees for the initial population and subtrees for

subtree mutation.

Required characteristics:

� Light computationally complex; optimally linear in tree size.

� User control over expected tree size.

� User control over specific node appearance in trees.

GROW method (each branch has depth ≤ D):

� nodes at depth d < Dmax randomly chosen

from F ∪ T ,

� nodes at depth d = Dmax randomly chosen

from T .

FULL method (each branch has depth = D):

� nodes at depth d < D randomly chosen from

function set F ,

� nodes at depth d = D randomly chosen from

terminal set T .

GROW(depth d, max depth D)

Returns: a tree of depth ≤ D − d
1 if (d = D) return a random terminal

2 else

3 choose a random func or term f

4 if (f is terminal) return f

5 else

6 for each argument a of f

7 fill a with GROW(d + 1, D)

8 return f
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pGP Initialisation

Characteristics of GROW:

� does not have a size parameter – does not allow the user to create a desired size distribution,

� does not allow the user to define the expected probabilities of certain nodes appearing in trees,

� does not give the user much control over the tree structures generated.

� there is no appropriate way to create trees with either a fixed or average tree size or depth.

RAMPED HALF-AND-HALF – GROW & FULL method each deliver half of the initial population.

D is chosen between 2 to 6,
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pGP Initialisation

Characteristics of GROW:

� does not have a size parameter – does not allow the user to create a desired size distribution,

� does not allow the user to define the expected probabilities of certain nodes appearing in trees,

� does not give the user much control over the tree structures generated.

� there is no appropriate way to create trees with either a fixed or average tree size or depth.

RAMPED HALF-AND-HALF – GROW & FULL method each deliver half of the initial population.

D is chosen between 2 to 6,

PTC1 is a modification of GROW that

� allows the user to define probabilities of appearance of functions within the tree,

� gives user a control over desired expected tree size, and guarantees that, on average, trees

will be of that size.

� does not give the user any control over the variance in tree sizes,

� is fast, running in time near-linear in tree size.
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pGP: Standard Crossover
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pGP: Subtree-Replacing Mutation

Mutation replaces selected subtree with a randomly generated new one.
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pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations

(> 1000) – the motivation is to increase efficiency by increasing the chance of being selected to

the fitter individuals in the population

� rank population by fitness and divide it into two groups:

− group I: the fittest individuals that together accounting for c = x% of the sum of fitness

values in the population,

− group II: remaining less fit individuals.

� 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the

time, an individual is selected from group II.

� For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.
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pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations

(> 1000) – the motivation is to increase efficiency by increasing the chance of being selected to

the fitter individuals in the population

� rank population by fitness and divide it into two groups:

− group I: the fittest individuals that together accounting for c = x% of the sum of fitness

values in the population,

− group II: remaining less fit individuals.

� 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the

time, an individual is selected from group II.

� For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.

Example: Effect of greedy over-selection for the 6-multiplexer problem

Population size I(M,i,z) without over-selection I(M,i,z) with over-selection

1,000 343,000 33,000

2,000 294,000 18,000

4,000 160,000 24,000
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pArtificial Ant Problem

Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).
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pArtificial Ant Problem: GP Approach

Terminals
� motorial section,

� T = MOVE, LEFT, RIGHT.

Functions
� conditional IF-FOOD-AHEAD – food detection, 2 ar-

guments (is/is not food ahead),

� unconditional PROG2, PROG3 – sequence of 2/3 ac-

tions.

Ant repeats the program until time runs out (600 time

steps) or all the food has been eaten.

Santa Fe trail
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pArtificial Ant Problem: GP Approach cont.

Typical solutions in the initial population

� this solution

completely fails in finding and eating the food,

� similarly this one

(IF-FOOD-AHEAD (LEFT)(RIGHT)),

� this one

(PROG2 (MOVE) (MOVE))

just by chance finds 3 pieces of food.

Santa Fe trail
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pArtificial Ant Problem: GP Approach cont.

More interesting solutions

� Quilter – performs systematic exploration of the grid,

(PROG3 (RIGHT)

(PROG3 (MOVE) (MOVE) (MOVE))

(PROG2 (LEFT) (MOVE)))

Quilter performance

� Tracker – perfectly tracks the food until the first ob-

stacle occurs, then it gets trapped in an infinite loop.

(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance
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pArtificial Ant Problem: GP Approach cont.

� Avoider – perfectly avoids food!!!

(I-F-A (RIGHT)

(I-F-A (RIGHT)

(PROG2 (MOVE) (LEFT))))

Avoider performance

Average fitness in the initial population is 3.5
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pArtificial Ant Problem: GP result

In generation 21, the following solution was found that already navigates an ant so that he eats

all 89 food pieces in the given time.

(I-F-A (MOVE)

(PROG3 (I-F-A (MOVE)

(RIGHT)

(PROG2 (RIGHT)

(PROG2 (LEFT)

(RIGHT))))

(PROG2 (I-F-A (MOVE)

(LEFT))

(MOVE))))

This program solves every trail with the obstacles of the same type as occurs in Santa Fe trail.

Compare the computational complexity with the GA approach!!!

GA approach: 65.536× 200 = 13× 106 trials.

vs.

GP approach: 500× 21 = 10.500 trials.
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pExample of GP in Action: Trigonometric Identity

Task is to find an equivalent expression to cos(2x).

GP implementation:

� Terminal set T = {x, 1.0}.

� Function set F = {+,−, ∗,%, sin}.

� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (0, 2π).

� Fitness: Sum of absolute differences between desired yi and the values returned by generated

expressions.

� Stopping criterion: A solution found that gives the error less than 0.01.
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))

(2 minus the expression on the 2nd and 3rd rows) is almost π/2 so the discovered identity is

cos(2x) = sin(π/2− 2x).
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pEA Materials: Reading, Demos, Software

Reading
� D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, 1989.

� Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

� Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008,

http://www.gp-field-guide.org.uk/

� Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press, 1992.

HUMIES: Human-Competitive Results
� http://www.genetic-programming.org/hc2011/combined.html

Demos
� M. Obitko: Introduction to genetic algorithms with java applets,

http://cs.felk.cvut.cz/ xobitko/ga/

Software
� ECJ 16 – A Java-based Evolutionary Computation Research System

http://cs.gmu.edu/ eclab/projects/ecj/
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