Scheduling

Radek Mařík

CVUT FEL, K13132

16. dubna 2014

Radek Mařík (marikr@fel.cvut.cz)

Scheduling

16. dubna 2014

Content

Introduction to Scheduling

- Methodology Overview
- Real Problem Examples
- Terminology

2 Classification of Scheduling Problems

- Machine environment
- Job Characteristics
- Optimization

3 Local Search Methods

- General
- Tabu Search

N SEC

Time, schedules, and resources [RN10]

- Classical planning representation
 - What to do
 - What order
- Extensions
 - How long an action takes
 - When it occurs
- Scheduling
 - Temporal constraints,
 - Resource contraints.
- Examples
 - Airline scheduling,
 - Which aircraft is assigned to which fligths
 - Departure and arrival time,
 - A number of employees is limited.
 - An aircraft crew, that serves during one flight, cannot be assigned to another flight.

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	16. dubna 2014	4 / 43

Introduction to Scheduling Methodology Overview

General Approach [Rud13]

Introduction

• Graham's classification of scheduling problems

General solving methods

- Exact solving method
 - Branch and bound methods
- Heuristics
 - dispatching rules
 - beam search
 - Iocal search:
 - simulated annealing, tabu search, genetic algorithms
- Mathematical programming: formulation
 - linear programming
 - integer programming
- Constraing satisfaction programming

43

- **Project planning:** project representation, critical path, time and cost trading, working force
- Scheduling: dispatching rules, branch and bound method, beam search,
- Scheduling in manufacturing: line with flexible time, with fixed time, with parallel working stations. m
- **Reservations:** interval scheduling, reservation system with reserves.
- **Timetabling:** scheduling with operators, scheduling with work force.
- Scheduling of employees: free day scheduling, work shift scheduling, cyclic shift scheduling.
- University scheduling: theory and practice

Schedule [Rud13]

Schedule:

 determined by tasks assignments to given times slots using given resources,

where the tasks should be performed

Complete schedule:

• all tasks of a given problem are covered by the schedule

Partial schedule:

• some tasks of a given problem are not resolved/assigned

Consistent schedule:

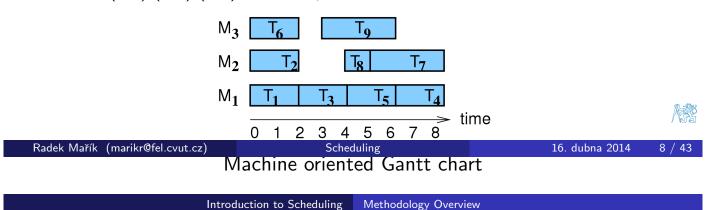
- a schedule in which all constraints are satisfied w.r.t. resource and tasks, e.g.
 - at most one tasks is performed on a signel machine with a unit capacity

7 / 43

Consistent complete schedule vs. consistent partial schedule

Optimal schedule:

• the assigments of tasks to machines is optimal w.r.t. to a given optimization criterion, e.g..

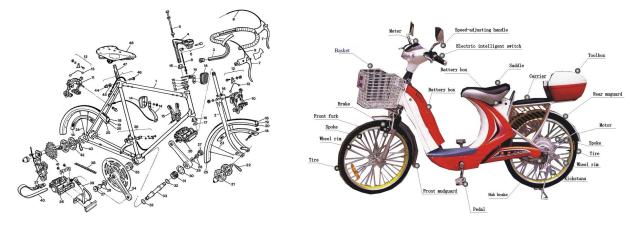

• min C_{max} : makespan (completion time of the last task) is minimum Radek Mařík (marikr@fel.cvut.cz) Scheduling 16. dubna 2014

Terminology of Scheduling [Rud13]

Scheduling

optimal assignment of resources to a set of tasks or activities over time

- limited amount of resources,
- gain maximization given constraints
- Machine $M_i, i = 1, \ldots, m$
- Jobs $J_j, j = 1, ..., n$
- (*i*, *j*) an operation or processing of jobs *j* on machine *i*
 - a job can be composed from several operations,
 - example: job 4 has three operations with non-zero processing time (2,4),(3,4),(6,4), i.e. it is performed on machines 2,3,6

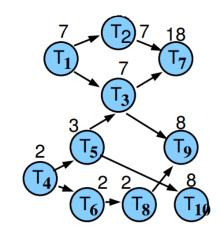

Static and dynamic parameters of jobs [Rud13]

- Static parameters of job
 - processing time p_{ij}, p_j:
 processing time of job j on machine i
 - release date of j r_j:
 earliest starting time of jobs j
 - due date d_j: committed completion time of job j (preference)
 - vs. deadline:
 time, when job j must be finised at latest (requirement)
 - weight w_j: importance of job j relatively to other jobs in the system
- Dynamic parameters of job
 - start time S_{ij}, S_j:
 time when job j is started on machine i
 - **completion time** *C_{ij}*, *C_j*: time when job *j* execution on machine *i* is finished

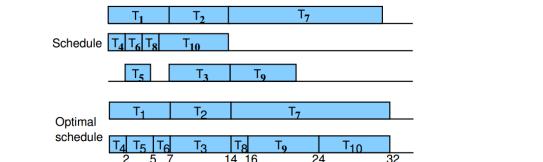
43

Introduction to Scheduling Real Problem Examples

Example: bike assembly [Rud13]


- 10 jobs with given processing time
- Precedence constraints
 - a given job can be executed after a specified subset of jobs
- Non-preemptive jobs
 - jobs cannot be interrupted
- Optimization criteria
 - makespan minimization
 - worker number minimization

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	16. dubna 2014	11 / 43


Introduction to Scheduling Real Problem Examples

Example: bike assembly [Rud13]

- 10 jobs with given processing time
- Precedence constraints
 - a given job can be executed after a specified subset of jobs
- Non-preemptive jobs
 - jobs cannot be interrupted
- Optimization criteria
 - makespan minimization
 - worker number minimization

AR

12 / 43

Introduction to Scheduling Real Problem Examples

Scheduling Examples [Rud13]

- Scheduling of semiconductor manufacturing
 - a large amount of heterogenous products,
 - different amounts of produced items,
 - machine setup cost, required processing time guarantees
 - Scheduling of supply chains
 - ex. a forest region paper production products from paper distribution centers — end user
 - manufacturing cost, transport, storage minimization,
 - Scheduling of paper production
 - input wood, output paper roles, expensive machines, different sorts of papers,
 - storage minimization
 - Car assembly lines
 - manufacturing of different types of cars with different equipment,
 - throuput optimization, load balancing
 - Lemonade filling into bottles
 - 4 flavors, each flavor has its own filling time,
 - cycle time minimization, one machine

Radek Mařík (marikr@fel.cvut.cz)	Scheduling	16. dubna 2014	13 / 43

Introduction to Scheduling Real Problem Examples

Scheduling Examples II [Rud13]

- Scheduling of hospital nurses
 - different numbers of nurses in working days and weekends,
 - weaker requirements for night shift rostering,
 - assignment of nurses to shifts, requirement satisfaction, cost minimization
- Grid computing scheduling
 - clusters, supercomputers, desktops, special devices,
 - scheduling of computation jobs and related resources,
 - scheduling of data transfers and data processing
- University scheduling
 - Time and rooms selection for subject education at universities
 - constraints given for subject placement,
 - preference requirements for time and room optimization,
 - minimization of overlapping subjects for all students,

N N N

Scheduling vs. timetabling [Rud13]

Scheduling . . . scheduling/planning

- resource allocation for given constraints over objects placed in time-space so that total cost of given resources is minimized,
- focus is given on object ordering, precedence conditions
 - ex. manufacturing scheduling: operation ordering determination, time dependencies of operation is important,
- schedule: specifies space and time information

Timetabling

- resource allocation for given constraints over objects pakce in time-space so that given criteria are met as much as possible,
- focus is given on time placement of objects
- time horizon is often given in advance (a number of scheduled slots)
 - ex. education timetabling: time and a place is assigned to subjects
- timetable: shows when and where events are performed.

Radek Mařík (marikr@fel.cvut.cz)Scheduling16. dubna 201416 / 43

Introduction to Scheduling Terminology

Sequencing and Rostering [Rud13]

Sequencing

- for given constraints:
 - a construction of job order in which they will be executed
- sequence
 - an order in which jobs are executed
- ex. lemonade filling into bottles

Rostering

- resource allocation for given constraints into slots using patterns
- o roster
 - a list of person names, that determines what jobs are executed and when
- ex. a roster of hospital nurses, a roster of bus drivers

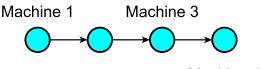
Graham's classification [Rud13, Nie10]

Graham's classification $\alpha |\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

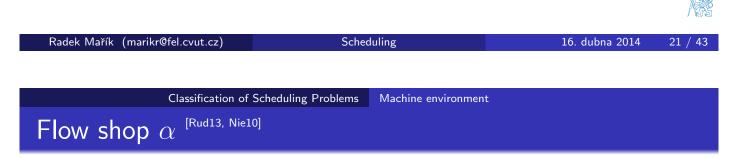
- α : the machine environment
 - describes a way of job assingments to machines
- β : the job characteristics,
 - describes constraints applied to jobs
- γ : the objective criterion to be minimized
- complexity for combinations of scheduling problems

Examples						
• <i>P</i> 3 <i>prec</i> <i>C_{max}</i> : bike a	• $P3 prec C_{max}$: bike assembly					
• $Pm r_j \sum w_jC_j$: paral	lel machines					
		133				
Radek Mařík (marikr@fel.cvut.cz)	Scheduling	16. dubna 2014 19 / 43				
Classification of Sc	heduling Problems Machine environmer	nt				


Machine Environment α [Rud13, Nie10]

- Single machine $(\alpha = 1)$: $1 | \dots | \dots$
- Identical parallel machines *Pm*
 - *m* identical machines working in parallel with the same speed
 - each job consist of a single operation,
 - each job processed by any of the machines m for p_j time units
- Uniform parallel machines *Qm*
 - processing time of job j on machine i propotional to its speed v_i
 - $p_{ij} = p_j / v_i$
 - ex. several computers with processor different speed
- Unrelated parallel machines Rm
 - machine have different speed for different jobs
 - machine *i* process job *j* with speed *v*_{ij}
 - $p_{ij} = p_j / v_{ij}$
 - ex. vector computer computes vector tasks faster than a classical PC

Shop Problems [Rud13, Nie10]


Shop Problems

- each tasks is executed sequentially on several machine
 - job *j* consists of several operations (*i*, *j*)
 - operation (i, j) of jobs j is performed on machine i withing time p_{ij}
 - ex: job j with 4 operations (1, j), (2, j), (3, j), (4, j)

- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
 - utilization of knowledge on subproblems or simplified problems in solutions

• Flow shop Fm

- *m* machines in series
- each job has to be processed on each machine
- all jobs follow the same route:
 - first machine 1, then machine 2, ...
- if the jobs have to be processed in the same order on all machines, we have a permutation flow shop

• Flexible flow shop FFs

- a generalizatin of flow shop problem
- s phases, a set of parallel machine is assigned to each phase
- i.e. flow shop with s parallel machines
- each job has to be processed by all phase in the same order
 - first on a machine of phase 1, then on a machine of phase 2, ...
- the task can be performed on any machine assigned to a given phase

Open shop & job shop [Rud13, Nie10]

• Job shop Jm

- flow shop with *m* machines
- each job has its individual predetermined route to follow
 - processing time of a given jobs might be zero for some machines
- $(i,j) \rightarrow (k,j)$ specifies that job j is performed on machine i earlier than on machine k
- example: $(2,j) \rightarrow (1,j) \rightarrow (3,j) \rightarrow (4,j)$

• Open shop Om

- flow shop with *m* machines
- processing time of a given jobs might be zero for some machines
- no routing restrictions (this is a scheduling decision)

• Precedence constraints prec

- linear sequence, tree structure
- for jobs a, b we write $a \rightarrow b$, with meaning of $S_a + p_a \leq S_b$
- example: bike assembly

• Preemptions *pmtn*

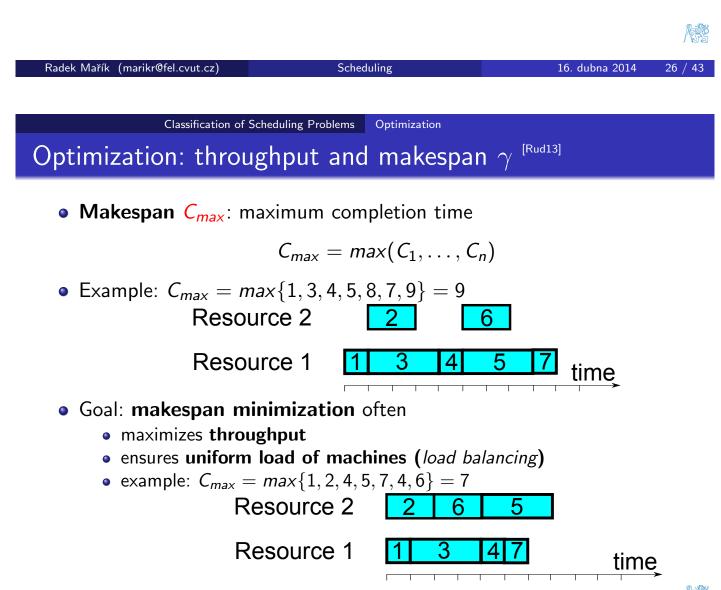
• a job with a higher priority interrupts the current job

• Machine suitability M_i

- a subset of machines M_j , on which job j can be executed
- room assignment: appropriate size of the classroom
- games: a computer with a HW graphical library
- Work force constraints W, W_I
 - another sort of machines is introduced to the problem
 - machines need to be served by operators and jobs can be performed only if operators are available, operators ${\it W}$
 - different groups of operators with a specific qualification can exist, W_I is a number of operators in group I

Classification of Scheduling Problems Job Characteristics

Constraints (continuation) β

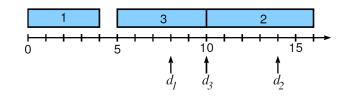

Routing constraints

- determine on which machine jobs can be executed,
- an order of job execution in shop problems
 - job shop problem: an operation order is given in advance
 - open shop problem: a route for the job is specified during scheduling

[Rud13, Nie10]

• Setup time and cost *s*_{ijk}, *c*_{ijk}, *s*_{jk}, *c*_{jk}

- depend on execution sequence
- s_{iik} time for execution of job k after job j on machine i
- c_{iik} cost of execution of job k after job j on machine i
- *s_{ik}*, *c_{ik}* time/cost independent on machine
- examples
 - lemonade filling into bottles
 - travelling salesman problem $1|s_{jk}|C_{max}$

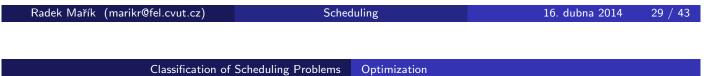

It is a basic criterion that is used very often.

Optimization: Lateness γ $^{\scriptscriptstyle{[Rud13]}}$

- Lateness of job j: $L_{max} = C_j d_j$
- Maximum lateness *L_{max}*

$$L_{max} = max(L_1, \ldots, L_n)$$

- Goal: maximum lateness minimization
- Example:



$$L_{max} = max(L_1, L_2, L_3) =$$

$$= max(C_1 - d_1, C_2 - d_2, C_3 - d_3) =$$

$$= max(4 - 8, 16 - 14, 10 - 10) =$$

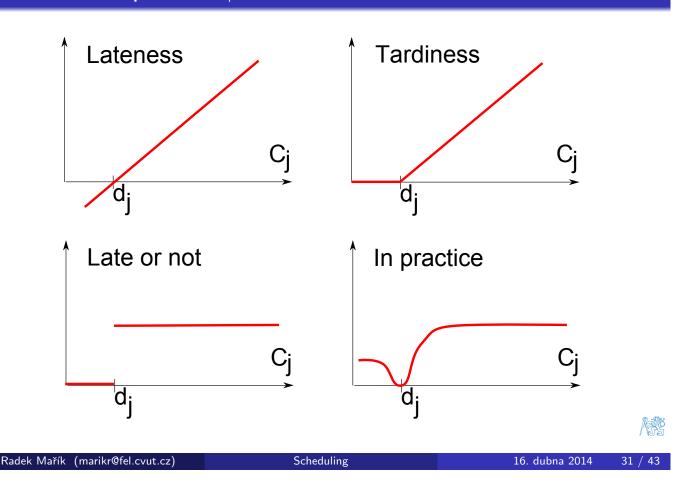
$$= max(-4, 2, 0) = 2$$

Optimization: tardiness γ [Rud13]

• Job *j* Tardiness:
$$T_j = max(C_j - d_j, 0)$$

- Goal: total tardiness minimization
- Example: $T_1 + T_2 + T_3 =$

$$= \max(C_1 - d_1, 0) + \max(C_2 - d_2, 0) + \max(C_3 - d_3, 0) = \\ \max(4 - 8, 0) + \max(16 - 14, 0) + \max(10 - 10, 0) = \\ = 0 + 2 + 0 = 2$$


• Total weighted tardiness

$$\sum_{j=1}^{n} w_j T_j$$

Scheduling

• Goal: total weighted tardiness minimization

Criteria Comparison γ [Rud13]

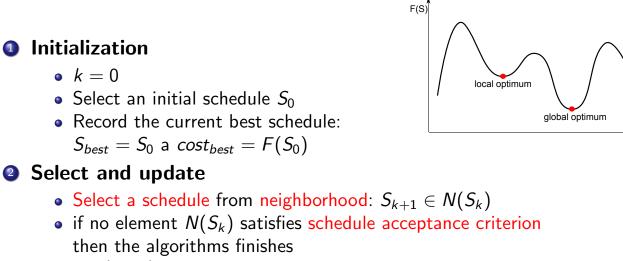
Local Search Methods General

Constructive vs. local methods [Rud13]

Constructive methods

- Start with the empty schedule
- Add step by step other jobs to the schedule so that the schedule remains consistent

Local search


- Start with a complete non-consistent schedule
 - trivial: random generated
- Try to find a better "similar" schedule by local modifications.
- Schedule quality is evaluated using optimization criteria
 - ex. makespan
- optimization criteria assess also schedule consistency
 - ex. a number of vialoted precedence constraints
- Hybrid approaches
 - combinations of both methods

Local Search Methods General

[Rud13] Local Search Algorithm

Initialization

• k = 0

• if $F(S_{k+1}) < cost_{best}$ then $S_{best} = S_{k+1}$ a $cost_{best} = F(S_{k+1})$

6 Finish

- if the stop constraints are satisfied then the algorithms finishes
- otherwise k = k + 1 and continue with step 2.

Radek Mařík (marikr@fel.cvut.cz)	Sched	uling	16. dubna 2014	34 / 43
	Local Search Methods	General		

Single machine + nonpreemptive jobs [Rud13]

Schedule representation

- permutations n jobs
- example with six jobs: 1, 4, 2, 6, 3, 5

Neighborhood definition

- pairwise exchange of neighboring jobs
 - n-1 possible schedules in the neighborhood
 - example: 1, 4, 2, 6, 3, 5 is modified to 1, 4, 2, 6, 5, 3
- or select an arbitrary job from the schedule and place it to an arbitrary position
 - $\leq n(n-1)$ possible schedules in the neighborhood
 - example: from 1, 4, 2, 6, 3, 5 we select randomly 4 and place it somewhere else: 1, 2, 6, 3, 4, 5

N. K.

[Rud13] Criteria for Schedule Selection

- Criteria for schedule selection
 - Criterion for schedule acceptance/refuse
- The main difference among a majority of methods
 - to accept a better schedule all the time?
 - to accept even worse schedule sometimes?
- methods

- probabilistic
 - random walk: with a small probability (ex. 0.01) a worse schedule is accepted
 - simulated annealing
- deterministic
 - tabu search: a tabu list of several last state/modifications that are not allowed for the following selection is maintained

				<u>A</u>
Radek Mařík (marikr@fel.cvut.cz)	Schee	luling	16. dubna 2014	36 / 43
	Local Search Methods	Tabu Search		
Tabu Search [Rud13]				

• Deterministic criterion for schedule acceptance/refuse

- Tabu list of several last schedule modifications is maintained
 - each new modification is stored on the top of the tabu list
 - ex. of a store modification: exchange of jobs j and k
 - tabu list = a list of forbidden modifications
 - the neighborhood is constrained over schedules, that do not require a change in the tabu list
 - a protection against cycling
 - example of a trivial cycling: the first step: exchange jobs 3 and 4, the second step: exchange jobs 4 and 3
 - a fixed length of the list (often: 5-9)
 - the oldest modifications of the tabu list are removed
 - too small length: cycling risk increases
 - too high length: search can be too constrained

Aspiration criterion

- determines when it is possible to make changes in the tabu list
- ex. a change in the tabu list is allowed if $F(S_{best})$ is improved.

Local Search Methods Tabu Search

Tabu Search Algorithm [Rud13]

 $\bullet \ k=1$

2

3

• Select an initial schedule S_1 using a heuristics, $S_{best} = S_1$

- Choose $S_c \in N(S_k)$
 - If the modification $S_k \to S_c$ is forbidden because it is in the tabu list then continue with step 2
- If the modification $S_k o S_c$ is not forbidden by the tabu list then $S_{k+1} = S_c$,

store the reverse change to the top of the tabu list move other positions in the tabu list one position lower remove the last item of the tabu list

- if $F(S_c) < F(S_{best})$ then $S_{best} = S_c$
- $\bullet \ k = k+1$
 - if a stopping condition is satisfied then finish otherwise continue with step 2.

Radek Mařík (marikr@fel.cvut.cz)Scheduling16. dubna 201439 / 43

Local Search Methods Tabu Search

Example: tabu list [Rud13]

A sche	A schedule problem with $1 d_j \sum w_j T_j$					
• re	emind	: T _j :	= ma	х(<i>С</i> ј	$-d_j$,	0)
	jobs	1	2	3	4	
	pj	10	10	13	4	
	d_j					
	Wj	14	12	1	12	
• N	• Neighborhood: all schedule obtained by pair exchange of neighbor jobs					
• S	• Schedule selection from the neighborhood: select the best schedule					
o T	abu li	ist [.] n	airs o	f iob	s (i l	() that were exchanged in the last two

- Tabu list: pairs of jobs (j, k) that were exchanged in the last two modifications
- Apply tabu search for the initial solution (2, 1, 4, 3)
- Perform four iterations

		Loca	al Search Methods	Tabu Search	
Example:	tabu	list -	solution I	[Rud13]	
jobs 1	2	3 4			
p_j 10	10	13 4	_		
$d_j \mid 4$	2	1 12			
<i>w_j</i> 14	12	1 12			
$\overline{S_1 = (2, 1, 4)}$	4,3)				_
- , , ,	<i>'</i>	= 12 · 8	$+ 14 \cdot 16 +$	$12 \cdot 12 + 1 \cdot 36 = 500 = F(S_{best})$	
F(1, 2, 4, 3)	5 5			(2011)	
$F(2, \underline{4}, \underline{1}, 3)$	= 436	= F(S)	best)		
F(2, 1, 3, 4)	= 652				
Tabu list: {	$(1,4)\}$				
	1 2)		426		_
$S_2 = (2, 4)$, , , , ,	(-/	= 430	$S_3 = (4, 2, 1, 3), F(S_3) = 460$	
$F(\underline{4}, \underline{2}, 1, 3)$	· · ·			F(2,4,1,3)(=436) tabu!	
F(2, 1, 4, 3)	/ (,	1!	$F(4, \underline{1}, \underline{2}, 3) = 440$	
F(2, 4, 3, 1)	·			F(4, 2, 3, 1) = 632	ര എന
Tabu list:	$\{(2,4)\}$	$, (1, 4) \}$		Tabu list: {(2,1), (2,4)}	'FF
Radek Mařík (ma	rikr@fel.cvut	t.cz)	Schec	duling 16. dubna 2014 41 /	43

			Local Search Metho	ods	Tabu Search
Example:	tabu	list	- solutio	n I	[Rud13]

jobs	1	2	3	4
p _j	10	10	13	4
d_j	4	2	1	12
Wj	14	12	1	12

$$\begin{split} S_3 &= (4,2,1,3), F(S_3) = 460\\ F(2,4,1,3)(=436) \text{ tabu!}\\ F(4,\underline{1},\underline{2},3) &= 440\\ F(4,2,3,1) &= 632\\ \text{Tabu list: } \{(2,1),(2,4)\} \end{split}$$

 $S_4 = (4, 1, 2, 3), F(S_4) = 440$ $F(\underline{1}, \underline{4}, 2, 3) = 408 = F(S_{best})$ F(4, 2, 1, 3)(= 460) tabu! F(4, 1, 3, 2) = 586Tabu list: {(4, 1), (2, 1)}

 $F(S_{best}) = 408$

ARE

Local Search Methods Tabu Search

Literatura I

Tim Nieberg. Lecture course "scheduling". http://www.or.uni-bonn.de/lectures/ss10/sched10.html, July 2010.

Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.

Hana Rudová.

PA167 Rozvrhování, lecture notes, in Czech. http://www.fi.muni.cz/ hanka/rozvrhovani/, March 2013.

Radek	Mařík I	(marikr@fel.cvut.cz)
Nauek	IVIAIIN I	Indriki@iei.cvut.czj

Scheduling

16. dubna 2014

43 / 43