Informed search algorithms
Michal Péchoucek, Milan Rollo

Department of Cybernetics
Czech Technical University in Prague

o>

http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start

Recommended literature o

Artificial Intelligence: A Modern Approach (Third Edition) by
Stuart Russell and Peter Norvig, 2007 Prentice Hall.

http://aima.cs.berkeley.edu/

"R 000 OOO0ODODO0OO0oo0oooooobbooooo0ooOooad

Informed state space search strategies

.. implement efficient ways to find an optimal solution and during that process they utilize
qualitative information about various states of the state space.

During the search we use (at least one):

m specific information about a cost of given state in state space
m specific information about a cost of applying each possible action

m heuristic information, estimation suitability of use of given action with respect to the state
space search efficiency

:: This information is used for the design of heuristic algorithm (called also as Best-First-Search),
which selects a node for expansion. Such a node leads the search process to an optimal solution.
When well-designed heuristic algorithm minimizes the search of those parts of state space that
don't lead to optimal solution.

" B R O0O0O0COCODODODODOoOOoOoooobboboboooOooOooao

Informed state space search strategies

] Oradea
Neamt
- 87
Zerind
75 151
L] lasi
Arad
Sl 92
ibiu
99 Fagaras
118] Vaslui
80
Timisoara - Rimnicu Vilcea
o1 142
111 . i i
] Lugoj Pitesti
]
70 98 .
85 Hirsova
"] Mehadia 101 . Urziceni
75 138 - 86
. Bucharest
Dobreta [120
m _ 90
Craiova Eforie
[] Giurgiu

" B R R 0O0O0C00O0O0OC 0D 0D 0D ODODOODODOOODOOOO0OOaO

Best-first search

Design of the best-first search algorithm builds on a classic algorithm for uninformed state
space search:

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := FIRST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14. end.

" B R R R0 00C O 0D 0D OD0ODODOODOOOOOOOOAO

Best-first search

only the selection of first element in a list is replaced by the selection of the best element

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14. end.

" B R R RRO0O0O0C0CO0OODODOO0DOOODOODODOOOOOAO

Evaluation function

:2 When algorithm tries to select a best state to expand (e.g. s,) from current state (e.g..
Sm) it works with following functions:

s ¢(m,n) — cost of action we need to apply to get from state m to state n

s g(m) — overall cost, sum of costs of all actions that were applied from the initial state to state
m

s h(n) — real or estimated total cost, sum of costs of all actions we need to apply from state n
to the goal state.

:: it is thus necessary to propose an f, that will integrate functions ¢, ¢
and h in a sophisticated way and will ensure a reasonable behavior in a given domain.

" B R B R RRO0O0O0OOODOODOOODOODODOOOOOAO

Examples of evaluation function

4 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)

— easy to implement, fast, resistive to infinite loops — but often gets
stuck at a local optimum !

H B R B R R RERECOOO0OO0OO0OODODOOODOOODOOOOODAO

Examples of evaluation function

4 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)
— easy to implement, fast, resistive to infinite loops — but often gets

stuck at a local optimum !

3 - Vm,n : ¢(m,n) = 1 if there is an edge from m to n. Thus the
flm,n) =g(m)+1

— minimizes number of steps (depth) to the solution

H B R B R R RERECOOO0OO0OO0OODODOOODOOODOOOOODAO

Examples of evaluation function

0 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)

— easy to implement, fast, resistive to infinite loops — but often gets
stuck at a local optimum !

o - Vm,n : ¢(m,n) = 1 if there is an edge from m to n. Thus the
flm,n) =g(m)+1

— minimizes number of steps (depth) to the solution

0 -Vm,n : f(m,n) = h(n) if there is an edge from m to n. Here
the i(n) is heuristic estimation of path cost from node n to closest goal node

— non-optimal, incomplete

H B R B R R RERECOOO0OO0OO0OODODOOODOOODOOOOODAO

Greedy search

Arad

118

] Vaslui

Timisoara

111 Pitesti

] Hirsova

[] Mehadia Urziceni

75 56

Dobreta []

Craiova Eforie

[] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

H B B B R EREREEREEREOCOO0OO0OO0CODOOODOOODOOOOGODAO

Greedy search

Arad O
h=366

Arad

Sibiu Timisoara Zerind
h=253 h=329 h=374

Arad

Zerind
h=374

Sibiu Timisoara
h=329

Arad

Arad Fagaras
h=366 h=178 h=380 h=193

Zerind
h=374

Timisoara
h=329

Arad
h=366

Oradea
h=380 h=193

Fagaras

Sibiu Bucharest
h=253 h=0

H B B B R REREEREEREENEOC0O0OO0O0OOOODOODODOOOOOGODAGO

A* algorithm

s A" algorithm uses the best-first search approach, where each state has assigned an evaluation
function:

f(n) = g(n) + h(n)

(
— remark: (c,g a h) in a form f(n,m) = c¢(m,n) + g(m) + h(n) could be written as
f(n) = g(n) + h(n) because g(n) = g(m) + c(m,n), where argument m does no longer
influence the value of the function.

= To set evaluation function f in a form f(n) = g(n)+ h(n) is a nontrivial problem because of
the function h(n) whose value is not known a priori and we have to estimate it.

s Due to the fact, that we optimize the behavior of algorithm, we want this estimation to be
as precise as possible — we want the value of h(n) to be as close to the value of h*(n) (real
value). Function h(n) is called

= Evaluation function f(n) is thus an estimation of real values, that we will get by function
f*(n) = g*(n) + h*(n) where g(n) = g*(n) (in most cases)

H B B B R REEREEREERERO0OO0OO0O0ODODODDODOOOOOGODAGO

Admissibility of A" algorithm

= Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?

H B B B R REEREREEEREENEO0O0OCOOODODODOOOOGOOGODAGO

Admissibility of A" algorithm

s Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?

m For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it
must hold that:

Vn : 0 < h(n) < h*(n)

s When that holds, we say that heuristic function is

s A* algorithm uses best-first search approach where each state is evaluated by function f(n) =
g(n) + h(n), where h(n) is

s A" algorithm will always find an optimal solution.

is BFS optimal?

H B B B R REEREREEEREENEO0O0OCOOODODODOOOOGOOGODAGO

Admissibility of A" algorithm

s Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?

m For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it
must hold that:

Vn : 0 < h(n) < h*(n)

s When that holds, we say that heuristic function is

s A* algorithm uses best-first search approach where each state is evaluated by function f(n) =
g(n) + h(n), where h(n) is

s A" algorithm will always find an optimal solution.

is BFS optimal?

yes, because for BFS f(n) = g(n) + h(n) = g(n). Thus 0 = h(n) < h*(n) and heuristic
is admissible.

H B B B R REEREREEEREENEO0O0OCOOODODODOOOOGOOGODAGO

Example of heuristic for path search

Arad

118 M Vaslui

Timisoara

111 Pitesti

] Hirsova

[] Mehadia Urziceni

75 56

Dobreta []

Craiova Eforie

[] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

H B B BB REREREREEREEENE0O0OO0OOODODODOOOOGOOGOAGO

Example of heuristic for path search

Arad 0)

f=0+366 Arad
=366

Sibiu Timisoara Zerind

f=140+253 f=118+329 f=75+374 Arad
=393 =447 —449

Sibiu Timisoara Zerind

f=118+329 f=75+374
=447 =449

Arad Fagaras Rimnicu

f=280+366 f=239+178 f=146+380 f=220+193
=646 =417 =526 =413

Sibiu

Arad

Zerind

f=75+374
=449

Timisoara

f=118+329
=447

Arad Oradea

f=280+366 f=239+178 f=146+380
=646 =417 =526

Craiova Pitesti Sibiu
f=366+160 f=317+98 f=300+253
=526 =415 =553

H B B B R RERREEEEENE0OOOOODODOOOOOGOAGO

Additional properties of A*

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14 . end.

H B B BB R R REEEEREEENE0O0OO0OOOOOOOOOAO

Additional properties of A*

clarification of operations in A* at line 9 - 10:

m in case that node e € E is already in an open list

— with value f(e) better, than the node is not added into the open list at line 10
— with value f(e) worse, than the better node is added into the open list at line 10 and the
worst node is removed

m in case that node ¢ € E is already in a closed list

— with value f(e) better, than that node is removed from the E list at line 9

— with value f(e) worse, than that node is not removed from E list at line 9, it is removed
from the closed list.

H B B B R R R R EEEEERE0OOOOOOOOOAO

Heuristic monotonicity

Heuristic function is /consistent (localy admissible) if

i.Vny, no, where ny expands into ny: h(ny) — h(ng) < cost(ni, ns),
where ¢(nq1,ny) is real cost from n; to ny

ii. h(goal) =0.

each monotone heuristic function is admissible.

H B E B R R R EEEEEERERE0OO0OOOOOOOOO

Heuristic monotonicity

Heuristic function is /consistent (localy admissible) if

i.Vny, no, where ny expands into ny: h(ny) — h(ng) < cost(ni, ns),
where ¢(nq1,ny) is real cost from n; to ny

ii. h(goal) =0.

each monotone heuristic function is admissible.

Proof:

for ng — ny h(ng) — h(n1) < ¢(ng,ny) due to the monotonicity
forny = ng ... h(ni) — h(ng) < ¢(ny,no) due to the monotonicity
for ny_y — goal ... h(ni_1)— h(goal) < c¢(ng_1, goal)

if h(goal) = 0 then when we sum all lines h(ng) < ¢(ng, goal)

H B E B R R R EEEEEERERE0OO0OOOOOOOOO

Dominance

s Having two admissible heuristics hy and hy so that Vn : hy(n) < hy(n), then we say that
heuristic ho hi.

— Both heuristics will find optimal solution, but hs needs to expand less nodes than h;.

s We have to take care that the computational time of dominating heuristic will not last con-
siderably longer than search of larger portion of state space.

H B E BB R EEEEEERERERE0OOOOOOOAO

Heuristics for 8-puzzle

7 2 4 1

5 6 3 4

3 3 1 6 7
Start State Goal State

H B B R EEEEEEEEREEREREO0OOOOOOO

Heuristics for 8-puzzle P

2 8 3
1.6 4 5 6 0
B s
1 12 |3
2 8 3
1 |l 3 4 0 s 4
Goal
2 8 3
16 4 5 6 0
iy |
Titles out of Sum of 2x the number
place distances of direct tile
out of place reversals

H B B R EEEEEEEEREERERERE0OO0OOOOO

Comparison of heuristics

Effective Branching Factor: average number of children 0" of each node. For depth d
and total number of expanded nodes N then must hold N = 1 + b* 4 (b*)2 4 - - - + (b*)?

Search Cost Effective Branching Factor

d IDS A*(hy) A*(hy) IDS A*(hy) A*(hy)

2 10 6 6 245 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 213 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 — 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

H B E B R R EEEEEEEEEERERERE0OOOOOO

Optimal efficiency of A*

:: We say that A" is . It means that for any heuristic function there
isn't any other optimal algorithm that will expand less nodes than A*.

We know about A* that algorithms is optimal, complete and optimally efficient. But it still
doesn’'t mean that it is suitable for all search problems. Unfortunatally the memory comsump-
tion still grows exponentially (it was prooved that this holds in cases when |h(n) — h*(n)| >

Ollog h*(n))).
Time complexity is not the major problem of A*. Due to the fact that A* must keep all
expanded states in a memory, it often happens that we run out of the memory sooner than we

run out of time.

H B E BB R EEEEEEEEEEREEEREOOOOO

Optimal efficiency of A*

H B E B B R EEEEEEEEEEREEREEOCOOO

Variants of algorithms improving memory usage

n — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

n — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.

H B E E B R EEEEEEEEEEEEEEERECOO

Variants of algorithms improving memory usage

(a) After expanding Arad, Sibiu, Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras 66

449

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

249

H B E E B RN EEEEEEEEEEEREEEERO

Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second

best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger

open list.

Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger
open list.

8 — memory bounded A* — uses all available memory. Simplified algorithm SMA* (simpli-
fied MA*) keeps predefined number of states in open-list. When the list is full the worst node
is forgotten.

Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger
open list.

8 — memory bounded A* — uses all available memory. Simplified algorithm SMA* (simpli-
fied MA*) keeps predefined number of states in open-list. When the list is full the worst node
is forgotten.

IDA* and RFBS are optimal (i.e., they cannot miss the best solution), MA* and SMA* can miss
optimum and get stuck in a local extreme (when the open 1list size bound is small).

