
Informed search algorithms

Michal Pěchouček, Milan Rollo

Department of Cybernetics
Czech Technical University in Prague

http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start

pRecommended literature

:: Artificial Intelligence: A Modern Approach (Third Edition) by

Stuart Russell and Peter Norvig, 2007 Prentice Hall.

http://aima.cs.berkeley.edu/

� �

pInformed state space search strategies

:: implement efficient ways to find an optimal solution and during that process they utilize

qualitative information about various states of the state space.

During the search we use (at least one):

� specific information about a cost of given state in state space

� specific information about a cost of applying each possible action

� heuristic information, estimation suitability of use of given action with respect to the state

space search efficiency

:: This information is used for the design of heuristic algorithm (called also as Best-First-Search),

which selects a node for expansion. Such a node leads the search process to an optimal solution.

When well-designed heuristic algorithm minimizes the search of those parts of state space that

don’t lead to optimal solution.

� �

pInformed state space search strategies

� �

pBest-first search

Design of the best-first search algorithm builds on a classic algorithm for uninformed state

space search:

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := FIRST(open)

5. closed := closed + [X], open := open - [X]

6. if X = GOAL then return(SUCCESS)

7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14. end.

� �

pBest-first search

only the selection of first element in a list is replaced by the selection of the best element

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]

6. if X = GOAL then return(SUCCESS)

7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14. end.

� �

pEvaluation function

:: When algorithm tries to select a best state to expand (e.g. sn) from current state (e.g..

sm) it works with following functions:

� c(m,n) – cost of action we need to apply to get from state m to state n

� g(m) – overall cost, sum of costs of all actions that were applied from the initial state to state

m

� h(n) – real or estimated total cost, sum of costs of all actions we need to apply from state n

to the goal state.

:: it is thus necessary to propose an evaluation function f , that will integrate functions c, g

and h in a sophisticated way and will ensure a reasonable behavior in a given domain.

� �

pExamples of evaluation function

� Gradient search (hill-climbing search)– where ∀m,n : f (m,n) = c(m,n)

− easy to implement, fast, resistive to infinite loops – but often gets

stuck at a local optimum !!!

� �

pExamples of evaluation function

� Gradient search (hill-climbing search)– where ∀m,n : f (m,n) = c(m,n)

− easy to implement, fast, resistive to infinite loops – but often gets

stuck at a local optimum !!!

� Breadth-first search – ∀m,n : c(m,n) = 1 if there is an edge from m to n. Thus the

f (m,n) = g(m) + 1

− minimizes number of steps (depth) to the solution

� �

pExamples of evaluation function

� Gradient search (hill-climbing search)– where ∀m,n : f (m,n) = c(m,n)

− easy to implement, fast, resistive to infinite loops – but often gets

stuck at a local optimum !!!

� Breadth-first search – ∀m,n : c(m,n) = 1 if there is an edge from m to n. Thus the

f (m,n) = g(m) + 1

− minimizes number of steps (depth) to the solution

� Greedy search algorithm – ∀m,n : f (m,n) = h(n) if there is an edge from m to n. Here

the h(n) is heuristic estimation of path cost from node n to closest goal node

− non-optimal, incomplete

� �

pGreedy search

� �

pGreedy search

� �

pA∗ algorithm

� A∗ algorithm uses the best-first search approach, where each state has assigned an evaluation

function:

− f (n) = g(n) + h(n)

− remark: (c,g a h) in a form f (n,m) = c(m,n) + g(m) + h(n) could be written as

f (n) = g(n) + h(n) because g(n) = g(m) + c(m,n), where argument m does no longer

influence the value of the function.

� To set evaluation function f in a form f (n) = g(n) + h(n) is a nontrivial problem because of

the function h(n) whose value is not known a priori and we have to estimate it.

� Due to the fact, that we optimize the behavior of algorithm, we want this estimation to be

as precise as possible – we want the value of h(n) to be as close to the value of h∗(n) (real

value). Function h(n) is called heuristic function.

� Evaluation function f (n) is thus an estimation of real values, that we will get by function

f ∗(n) = g∗(n) + h∗(n) where g(n) = g∗(n) (in most cases)

� �

pAdmissibility of A∗ algorithm

� Which features must the heuristic function h(n) have? What will happen if h(n) > h∗(n)?

And what if h(n) < h∗(n)?

� �

pAdmissibility of A∗ algorithm

� Which features must the heuristic function h(n) have? What will happen if h(n) > h∗(n)?

And what if h(n) < h∗(n)?

� For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it

must hold that:

∀n : 0 ≤ h(n) ≤ h∗(n)

� When that holds, we say that heuristic function is admissible.

� A∗ algorithm uses best-first search approach where each state is evaluated by function f (n) =

g(n) + h(n), where h(n) is

� A∗ algorithm will always find an optimal solution.

is BFS optimal?

� �

pAdmissibility of A∗ algorithm

� Which features must the heuristic function h(n) have? What will happen if h(n) > h∗(n)?

And what if h(n) < h∗(n)?

� For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it

must hold that:

∀n : 0 ≤ h(n) ≤ h∗(n)

� When that holds, we say that heuristic function is admissible.

� A∗ algorithm uses best-first search approach where each state is evaluated by function f (n) =

g(n) + h(n), where h(n) is

� A∗ algorithm will always find an optimal solution.

is BFS optimal?

yes, because for BFS f (n) = g(n) + h(n) = g(n). Thus 0 = h(n) < h∗(n) and heuristic

is admissible.

� �

pExample of heuristic for path search

� �

pExample of heuristic for path search

� �

pAdditional properties of A*

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]

6. if X = GOAL then return(SUCCESS)

7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14. end.

� �

pAdditional properties of A*

clarification of operations in A∗ at line 9 - 10:

� in case that node e ∈ E is already in an open list

− with value f (e) better, than the node is not added into the open list at line 10

− with value f (e) worse, than the better node is added into the open list at line 10 and the

worst node is removed

� in case that node e ∈ E is already in a closed list

− with value f (e) better, than that node is removed from the E list at line 9

− with value f (e) worse, than that node is not removed from E list at line 9, it is removed

from the closed list.

� �

pHeuristic monotonicity

Heuristic function is monotone/consistent (localy admissible) if

i.∀n1, n2, where n1 expands into n2: h(n1)− h(n2) ≤ cost(n1, n2),

where c(n1, n2) is real cost from n1 to n2

ii. h(goal) = 0.

each monotone heuristic function is admissible.

� �

pHeuristic monotonicity

Heuristic function is monotone/consistent (localy admissible) if

i.∀n1, n2, where n1 expands into n2: h(n1)− h(n2) ≤ cost(n1, n2),

where c(n1, n2) is real cost from n1 to n2

ii. h(goal) = 0.

each monotone heuristic function is admissible.

Proof:

for n0 → n1 . . . h(n0)− h(n1) ≤ c(n0, n1) due to the monotonicity

for n1 → n2 . . . h(n1)− h(n2) ≤ c(n1, n2) due to the monotonicity

. . .

for nk−1 → goal . . . h(nk−1)− h(goal) ≤ c(nk−1, goal)

if h(goal) = 0 then when we sum all lines h(n0) ≤ c(n0, goal)

� �

pDominance

� Having two admissible heuristics h1 and h2 so that ∀n : h1(n) ≤ h2(n), then we say that

heuristic h2 dominates h1.

− Both heuristics will find optimal solution, but h2 needs to expand less nodes than h1.

� We have to take care that the computational time of dominating heuristic will not last con-

siderably longer than search of larger portion of state space.

� �

pHeuristics for 8-puzzle

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

� �

pHeuristics for 8-puzzle

� �

pComparison of heuristics

Effective Branching Factor: average number of children b∗ of each node. For depth d

and total number of expanded nodes N then must hold N = 1 + b∗ + (b∗)2 + · · · + (b∗)d

� �

pOptimal efficiency of A∗

:: We say that A∗ is optimally efficient. It means that for any heuristic function there

isn’t any other optimal algorithm that will expand less nodes than A∗.

We know about A∗ that algorithms is optimal, complete and optimally efficient. But it still

doesn’t mean that it is suitable for all search problems. Unfortunatally the memory comsump-

tion still grows exponentially (it was prooved that this holds in cases when |h(n) − h∗(n)| >
O(log h∗(n))).

:: Time complexity is not the major problem of A∗. Due to the fact that A∗ must keep all

expanded states in a memory, it often happens that we run out of the memory sooner than we

run out of time.

� �

pOptimal efficiency of A∗

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

� �

pVariants of algorithms improving memory usage

� IDA∗ – iterative deepening A∗ algorithm: Works in a same way as an iterative-deepening

depth-first search (IDDFS), with that difference that we don’t increase the depth limit, but

the least value of f which is higher than f from previous run.

� RBFS – Recursive best first search, recursive IDA∗. It limits the value of f to the second

best in given layer.

� �

pVariants of algorithms improving memory usage

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 526

526 417 553

646 526

450591

646 526

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450
417

417

Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu, Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

� �

pVariants of algorithms improving memory usage

� IDA∗ – iterative deepening A∗ algorithm: Works in a same way as an iterative-deepening

depth-first search (IDDFS), with that difference that we don’t increase the depth limit, but

the least value of f which is higher than f from previous run.

� RBFS – Recursive best first search, recursive IDA∗. It limits the value of f to the second

best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger

open list.

� �

pVariants of algorithms improving memory usage

� IDA∗ – iterative deepening A∗ algorithm: Works in a same way as an iterative-deepening

depth-first search (IDDFS), with that difference that we don’t increase the depth limit, but

the least value of f which is higher than f from previous run.

� RBFS – Recursive best first search, recursive IDA∗. It limits the value of f to the second

best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger

open list.

� MA∗ – memory bounded A∗ – uses all available memory. Simplified algorithm SMA∗ (simpli-

fied MA∗) keeps predefined number of states in open-list. When the list is full the worst node

is forgotten.

� �

pVariants of algorithms improving memory usage

� IDA∗ – iterative deepening A∗ algorithm: Works in a same way as an iterative-deepening

depth-first search (IDDFS), with that difference that we don’t increase the depth limit, but

the least value of f which is higher than f from previous run.

� RBFS – Recursive best first search, recursive IDA∗. It limits the value of f to the second

best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger

open list.

� MA∗ – memory bounded A∗ – uses all available memory. Simplified algorithm SMA∗ (simpli-

fied MA∗) keeps predefined number of states in open-list. When the list is full the worst node

is forgotten.

IDA∗ and RFBS are optimal (i.e., they cannot miss the best solution), MA∗ and SMA∗ can miss

optimum and get stuck in a local extreme (when the open list size bound is small).

� �

