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Informed state space search strategies

.. implement efficient ways to find an optimal solution and during that process they utilize
qualitative information about various states of the state space.

During the search we use (at least one):

m specific information about a cost of given state in state space
m specific information about a cost of applying each possible action

m heuristic information, estimation suitability of use of given action with respect to the state
space search efficiency

:: This information is used for the design of heuristic algorithm (called also as Best-First-Search),
which selects a node for expansion. Such a node leads the search process to an optimal solution.
When well-designed heuristic algorithm minimizes the search of those parts of state space that
don't lead to optimal solution.

" B R O0O0O0COCODODODODOoOOoOoooobboboboooOooOooao



Informed state space search strategies
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Best-first search

Design of the best-first search algorithm builds on a classic algorithm for uninformed state
space search:

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := FIRST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13.  return(failure)

14. end.
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Best-first search

only the selection of first element in a list is replaced by the selection of the best element

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13.  return(failure)

14. end.
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Evaluation function

:2 When algorithm tries to select a best state to expand (e.g. s,) from current state (e.g..
Sm) it works with following functions:

s ¢(m,n) — cost of action we need to apply to get from state m to state n

s g(m) — overall cost, sum of costs of all actions that were applied from the initial state to state
m

s h(n) — real or estimated total cost, sum of costs of all actions we need to apply from state n
to the goal state.

:: it is thus necessary to propose an f, that will integrate functions ¢, ¢
and h in a sophisticated way and will ensure a reasonable behavior in a given domain.
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Examples of evaluation function

4 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)

— easy to implement, fast, resistive to infinite loops — but often gets
stuck at a local optimum !
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Examples of evaluation function

4 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)
— easy to implement, fast, resistive to infinite loops — but often gets

stuck at a local optimum !

3 - Vm,n : ¢(m,n) = 1 if there is an edge from m to n. Thus the
flm,n) =g(m)+1

— minimizes number of steps (depth) to the solution
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Examples of evaluation function

0 (hill-climbing search)— where Ym, n : f(m,n) = c(m,n)

— easy to implement, fast, resistive to infinite loops — but often gets
stuck at a local optimum !

o - Vm,n : ¢(m,n) = 1 if there is an edge from m to n. Thus the
flm,n) =g(m)+1

— minimizes number of steps (depth) to the solution

0 -Vm,n : f(m,n) = h(n) if there is an edge from m to n. Here
the i(n) is heuristic estimation of path cost from node n to closest goal node

— non-optimal, incomplete
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Greedy search
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Greedy search
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A* algorithm

s A" algorithm uses the best-first search approach, where each state has assigned an evaluation
function:

f(n) = g(n) + h(n)

(
— remark: (c,g a h) in a form f(n,m) = c¢(m,n) + g(m) + h(n) could be written as
f(n) = g(n) + h(n) because g(n) = g(m) + c(m,n), where argument m does no longer
influence the value of the function.

= To set evaluation function f in a form f(n) = g(n)+ h(n) is a nontrivial problem because of
the function h(n) whose value is not known a priori and we have to estimate it.

s Due to the fact, that we optimize the behavior of algorithm, we want this estimation to be
as precise as possible — we want the value of h(n) to be as close to the value of h*(n) (real
value). Function h(n) is called

= Evaluation function f(n) is thus an estimation of real values, that we will get by function
f*(n) = g*(n) + h*(n) where g(n) = g*(n) (in most cases)
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Admissibility of A" algorithm

= Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?
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Admissibility of A" algorithm

s Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?

m For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it
must hold that:

Vn : 0 < h(n) < h*(n)

s When that holds, we say that heuristic function is

s A* algorithm uses best-first search approach where each state is evaluated by function f(n) =
g(n) + h(n), where h(n) is

s A" algorithm will always find an optimal solution.

is BFS optimal?
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Admissibility of A" algorithm

s Which features must the heuristic function h(n) have? What will happen if A(n) > h*(n)?
And what if h(n) < h*(n)?

m For an algorithm to behave in a reasonable manner, i.e to find an optimal solution first, it
must hold that:

Vn : 0 < h(n) < h*(n)

s When that holds, we say that heuristic function is

s A* algorithm uses best-first search approach where each state is evaluated by function f(n) =
g(n) + h(n), where h(n) is

s A" algorithm will always find an optimal solution.

is BFS optimal?

yes, because for BFS f(n) = g(n) + h(n) = g(n). Thus 0 = h(n) < h*(n) and heuristic
is admissible.

H B B B R REEREREEEREENEO0O0OCOOODODODOOOOGOOGODAGO



Example of heuristic for path search
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Example of heuristic for path search
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Additional properties of A*

1. begin

2. open := [Start], closed := []

3. while (open <> []) do begin

4. X := BEST(open)

5. closed := closed + [X], open := open - [X]
6. if X = GOAL then return(SUCCESS)
7. else begin

8. E := expand(X)

9. E := E - closed

10. open := open + E

11. end

12. end

13. return(failure)

14 . end.
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Additional properties of A*

clarification of operations in A* at line 9 - 10:

m in case that node e € E is already in an open list

— with value f(e) better, than the node is not added into the open list at line 10
— with value f(e) worse, than the better node is added into the open list at line 10 and the
worst node is removed

m in case that node ¢ € E is already in a closed list

— with value f(e) better, than that node is removed from the E list at line 9

— with value f(e) worse, than that node is not removed from E list at line 9, it is removed
from the closed list.
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Heuristic monotonicity

Heuristic function is /consistent (localy admissible) if

i.Vny, no, where ny expands into ny: h(ny) — h(ng) < cost(ni, ns),
where ¢(nq1,ny) is real cost from n; to ny

ii. h(goal) =0.

each monotone heuristic function is admissible.
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Heuristic monotonicity

Heuristic function is /consistent (localy admissible) if

i.Vny, no, where ny expands into ny: h(ny) — h(ng) < cost(ni, ns),
where ¢(nq1,ny) is real cost from n; to ny

ii. h(goal) =0.

each monotone heuristic function is admissible.

Proof:

for ng — ny h(ng) — h(n1) < ¢(ng,ny) due to the monotonicity
forny = ng ... h(ni) — h(ng) < ¢(ny,no) due to the monotonicity
for ny_y — goal ... h(ni_1)— h(goal) < c¢(ng_1, goal)

if h(goal) = 0 then when we sum all lines h(ng) < ¢(ng, goal)
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Dominance

s Having two admissible heuristics hy and hy so that Vn : hy(n) < hy(n), then we say that
heuristic ho hi.

— Both heuristics will find optimal solution, but hs needs to expand less nodes than h;.

s We have to take care that the computational time of dominating heuristic will not last con-
siderably longer than search of larger portion of state space.
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Heuristics for 8-puzzle
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Heuristics for 8-puzzle P
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Comparison of heuristics

Effective Branching Factor: average number of children 0" of each node. For depth d
and total number of expanded nodes N then must hold N = 1 + b* 4 (b*)2 4 - - - + (b*)?

Search Cost Effective Branching Factor

d IDS A*(hy) A*(hy) IDS A*(hy) A*(hy)

2 10 6 6 245 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 213 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 — 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26
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Optimal efficiency of A*

:: We say that A" is . It means that for any heuristic function there
isn't any other optimal algorithm that will expand less nodes than A*.

We know about A* that algorithms is optimal, complete and optimally efficient. But it still
doesn’'t mean that it is suitable for all search problems. Unfortunatally the memory comsump-
tion still grows exponentially (it was prooved that this holds in cases when |h(n) — h*(n)| >

Ollog h*(n))).
Time complexity is not the major problem of A*. Due to the fact that A* must keep all
expanded states in a memory, it often happens that we run out of the memory sooner than we

run out of time.
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Optimal efficiency of A*
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Variants of algorithms improving memory usage

n — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

n — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.
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Variants of algorithms improving memory usage

(a) After expanding Arad, Sibiu, Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras 66

449

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

249
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Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second

best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger

open list.




Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger
open list.

8 — memory bounded A* — uses all available memory. Simplified algorithm SMA* (simpli-
fied MA*) keeps predefined number of states in open-list. When the list is full the worst node
is forgotten.




Variants of algorithms improving memory usage

N — iterative deepening A* algorithm: Works in a same way as an iterative-deepening
depth-first search (IDDFS), with that difference that we don't increase the depth limit, but
the least value of f which is higher than f from previous run.

- — Recursive best first search, recursive IDA*. It limits the value of f to the second
best in given layer.

While IDA* is more memory efficient, RFBS will find a solution faster, because it holds bigger
open list.

8 — memory bounded A* — uses all available memory. Simplified algorithm SMA* (simpli-
fied MA*) keeps predefined number of states in open-list. When the list is full the worst node
is forgotten.

IDA* and RFBS are optimal (i.e., they cannot miss the best solution), MA* and SMA* can miss
optimum and get stuck in a local extreme (when the open 1list size bound is small).




