
Uninformed state space search strategies

Michal Pěchouček, Milan Rollo

Department of Computer Science
Czech Technical University in Prague

http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start



pRecommended literature

:: Artificial Intelligence: A Modern Approach (Third Edition) by

Stuart Russell and Peter Norvig, 2007 Prentice Hall.

http://aima.cs.berkeley.edu/

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �



pInitial remarks on Artificial Intelligence

Artificial intelligence as a:

� Approach to research and understanding of intelligence

� Approach to development of algorithms with characteristics of AI (which necessarily doesn’t

have to be human):

− Decision support, optimization of decision trees, decision autonomy

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

Artificial intelligence as a science about human reasoning and nature of human knowledge

by modeling them by computers can be divided into following schools:

� symbolic functionalism – intelligence represented in symbols and mutual manipulations exam-

ples: knowledge systems, automated reasoning, planning

� connectionism – inspired by natural processes, emergency of intelligent behavior, high number

of similar small connected and interacting units example: neural networks

� robotic functionalism (behavioralism)– based on assumption that combining high number of

unintelligent processes (black boxes) can lead to intelligent behavior

example: intelligent robotics

� hybrid and other approaches: multi-agent systems, genetic algorithms, artificial life, ...

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

� Strong AI (Bretano): intelligence, which invokes mental states identical with mental states

common to human understanding (extreme definition)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

� Strong AI (Bretano): intelligence, which invokes mental states identical with mental states

common to human understanding (extreme definition)

� Weak AI (Turing): such an understanding of inputs so that it makes the system to react

intelligently (as human)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

� Strong AI (Bretano): intelligence, which invokes mental states identical with mental states

common to human understanding (extreme definition)

� Weak AI (Turing): such an understanding of inputs so that it makes the system to react

intelligently (as human)

� Middling AI (Smith): the right type of behavior reacting to given precepts is done through

an appropriate knowledge structures and reasoning machinery

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

� Strong AI (Bretano): intelligence, which invokes mental states identical with mental states

common to human understanding (extreme definition)

� Weak AI (Turing): such an understanding of inputs so that it makes the system to react

intelligently (as human)

� Middling AI (Smith): the right type of behavior reacting to given precepts is done through

an appropriate knowledge structures and reasoning machinery

� Turing test - test for a weak AI.

� Turing machine - example of abstract machine, which could be used to model any algorithm,

computer program.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

Symbolic functionalism is based on modeling of two basic aspects of intelligent behavior:

� knowledge

� reasoning

Both can be modeled on various levels of details. Strong methods allow general reasoning

models, while weak methods are specific.

:: Simplified task of AI according to the symbolic functionalism can thus be formulated as: how

to represent the right knowledge and to to program such a reasoning mechanisms that will extend

out knowledge base with new hypotheses.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pInitial remarks on Artificial Intelligence

Having two extreme cases of AI according to the symbolic functionalism:

� strong – knowledge is represented by a predicate logic terms and symbols and reasoning

model is represented by a deductive reasoning

� weak – knowledge is represented as a set of statements and reasoning is represented by a set

of if-then clauses

In both cases is the set of newly acquired knowledge (either induced or hypothetic) huge and it

is necessary to search and create it efficiently. Search strategy is thus a part of the reasoning

model. Space of newly acquired knowledge is called state space. Durng the problem solving the

state space is composed from partial solutions or auxiliary hypothesis. Some partial solutions are

classified as goal states.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/AI Concepts



pState Space

Problem solving, as one of aspects of intelligent reasoning, is considered as o problem of

finding (from initial state s0) of such a state sn, which has features that we require –

goal(sn). Such states we call goal states – sgoal. In some cases the problem solving is

defined as a problem of finding a path from initial to goal state. In such a case we don’t

search space of nodes, but space of paths.

State space search problem is defined by

� initial state - s0

� goal test – goal(sn)

� successor function - a set of action-state pairs,

� path cost, evaluation of costs of applying actions

Examples: 8-queens problem, cryptarithmetics, chess, 8-puzzle, reasoning in math, natural lan-

guage processing, planning and scheduling, robotic navigation

Situation becomes complicated in cases, when state space changes dynamically – e.g. in dynamic

environment or playing games with adversarial opponent.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pExample: The 8-puzzle

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pExample: 8-queens

Partial solution of 8-queens problem

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pExample: Cryptarithmetic

forty solution: 19786 e.g. f=1, o=9, r=7, etc.

+ ten + 850

+ ten + 850

--------- ---------

sixty 21486

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pExample: Travelling salesman

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pSEARCH: State space search

Similar to modeling of artificial intelligence during the state space search we face problems

with

� state space representation — implementation of actions (expand function), infinite loop

prevention, ...

� search strategies — decision which action to apply as a first, estimations, heuristic functions

What are our requirements on successful algorithm?

� does it always find a solution if one exists, does if search whole state space? – completeness

� does it halt or will it run forever?

� does it always find a least-cost solution? – optimality

� what is a complexity of algorithm? – time and space complexity

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pProhledáváńı Stavového Prostoru

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/Stavový prostor



pProhledáváńı Stavového Prostoru

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/Stavový prostor



pProhledáváńı Stavového Prostoru

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/Stavový prostor



pProhledáváńı Stavového Prostoru

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/Stavový prostor



pProhledáváńı Stavového Prostoru

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/Stavový prostor



pStrategies of uninformed state space search

forward chaining

� searches the space from start to end,

� applies actions to find new states,

� process goes iteratively while solution if found

backward chaining

� searches the space from end to start,

� looks for actions, which generate current state

� conditions of those actions generate new goals

� process goes iteratively to state, which describes given problem

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pStrategies of uninformed state space search

Alternate strategies (Bidirectional search), searches the spaces from both sides

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pStrategies of uninformed state space search

Search strategies are also divided according to the order in which actions are applied

� depth-first search always applies actions on latest expanded node, in case of failure it applies

backtracking

� breadth-first search first searches all states which have a same distance from initial state,

before expanding on a new layer

During the state space search we work with:

1. dynamically generated state space in a form of oriented graph

2. s data structures: lists that are used for state space search:

� open list – list of open states, used to control the state expansion

� closed list – list of searched states, used to prevent infinite loops

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/State space



pBreadth First Search (BFS)

begin

open := [Start]

while (open <> []) do begin

X := first(_open)

open := open - [X]

if X = GOAL then return(SUCCESS)

else begin

E := expand(X)

open := open + E

end

end

return(failure)

end.

mark <> means not equal,

operator - means remove of element(s) from list

operator + means add element(s) at the end of list

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pRemark - analysis of algorithm complexity

function SUM(seq)

sum <= 0

for i : 1 to length(seq)

sum = sum + seq(i)

return sum

� how long will algorithm run? (simplification: algorithm run is equal to the number of opera-

tions)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pRemark - analysis of algorithm complexity

function SUM(seq)

sum <= 0

for i : 1 to length(seq)

sum = sum + seq(i)

return sum

� how long will algorithm run? (simplification: algorithm run is equal to the number of opera-

tions)

− for length(seq) = n, T (n) = 2n + 2

− for different n we can work with T (n)avg a T (n)worst

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pRemark - analysis of algorithm complexity

function SUM(seq)

sum <= 0

for i : 1 to length(seq)

sum = sum + seq(i)

return sum

� how long will algorithm run? (simplification: algorithm run is equal to the number of opera-

tions)

− for length(seq) = n, T (n) = 2n + 2

− for different n we can work with T (n)avg a T (n)worst

� asymptotic analysis of algorithm?

− T (n) ≈ O(f (n)) if T (n) ≤ kf (n) + c ∀n

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pRemark - analysis of algorithm complexity

� classification of problems:

− P problems - (e.g.: O(na),O(log n))

− NP problems - nondeterministic P problems, deterministic exponential complexity on Turing

machine

− NP hard - hardest from NP class, i.e each problem from NP can be transformed into a

solution of NP hard problem

− NP-complete problems - class of NP problems, which are NP hard and in NP

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1+ b+ b2+ b3+ ...+ bd+ b(bd− 1) = O(bd+1) – according to algorithm given on slide

21, we count number of expanded nodes (maximum number of nodes in open list), valid only

if m > d (else O(bd)).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b+ b2+ b3+ ...+ bd = O(bd) – could be implemented in case, if we test expanded

node for solution immediately after the expansion (see algorithm on following slide) – we

assume this algorithm while studying algorithm complexity in the rest of the lecture.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

begin

if Start = GOAL then return(SUCCESS)

while (_open <> []) do begin

X := first(open)

open := open - [X]

else begin

E := expand(X)

if for any Y in E: Y = GOAL then return(SUCCESS)

else open := open + E

end

end

return(failure)

end.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b + b2 + b3 + ... + bd = O(bd)

� space ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b + b2 + b3 + ... + bd = O(bd)

� space: O(bd)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b + b2 + b3 + ... + bd = O(bd)

� space: O(bd)

� optimal ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b + b2 + b3 + ... + bd = O(bd)

� space: O(bd)

� optimal: yes, if we optimize depth

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProperties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: YES (if b is finite)

� time: 1 + b + b2 + b3 + ... + bd = O(bd)

� space: O(bd)

� optimal: yes, if we optimize depth

Space is the biggest problem - you can easily generate more than 100MB/sec

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/BFS



pProhledáváńı do š́ı̌rky – Breadth First Search (BFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/BFS



pProhledáváńı do hloubky – Depth First Search (DFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/DFS



pProhledáváńı do hloubky – Depth First Search (DFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/DFS



pProhledáváńı do hloubky – Depth First Search (DFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/DFS



pProhledáváńı do hloubky – Depth First Search (DFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/DFS



pProhledáváńı do hloubky – Depth First Search (DFS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/DFS



pProperties of DFS

Algorithm, which doesn’t care about loops:

begin

open := [Start]

while (open <> []) do begin

X := first(open)

open := open - [X]

if X = GOAL then return(SUCCESS)

else begin

E := expand(X)

open := E + open

end

end

return(failure)

end.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Algorithm, which prevents infinite looping using a closed list:

begin

open := [Start], closed := []

while (open <> []) do begin

X := first(open)

closed := closed + [X], open := open - [X]

if X = GOAL then return(SUCCESS)

else begin

E := expand(X)

E := E - closed

open := E + open

end

end

return(failure)

end.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time: bm – i.e. exponentially by m, problems, if m is much larger than d.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time: bm – i.e. exponentially by m, problems, if m is much larger than d.

� space ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time: bm – i.e. exponentially by m, problems, if m is much larger than d.

� space: O(bm)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time: bm – i.e. exponentially by m, problems, if m is much larger than d.

� space: O(bm)

� optimal ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pProperties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be

∞.

� complete: NO (even if b is bounded, due to the possible existence of loops)

� time: bm – i.e. exponentially by m, problems, if m is much larger than d.

� space: O(bm)

� optimal: no

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/DFS



pAlternate strategies

DL-DFS (Depth-limited) search:
depth-first search with depth limit l

ID-DFS (Iterative deepening) search:
depth-first search with iteratively increasing depth limit l

Algorithm:

1. l = 1

2. do DL-DFS with depth l

3. if solution found end

else l = l + 1 a goto 2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pAlgoritmus IDDFS prohledáváńı

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/IDDFS



pAlgoritmus IDDFS prohledáváńı

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/IDDFS



pAlgoritmus IDDFS prohledáváńı

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/IDDFS



pAlgoritmus IDDFS prohledáváńı

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � �

/IDDFS



pIterative deepening search

� complete ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

if we assume thet each search is carried out by algorithm with complexity O(bl)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space: O(bd)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space: O(bd)

� optimal ?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space: O(bd)

� optimal: yes, if we optimize depth

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space: O(bd)

� optimal: yes, if we optimize depth

:: comparison: for b = 10 and d = 5 in a worst case:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pIterative deepening search

� complete: YES (if b is bounded)

� time: d + 1 + (d)b + (d− 1)b2 + (d− 2)b3 + ... + bd < dbd = O(bd)

� space: O(bd)

� optimal: yes, if we optimize depth

:: comparison: for b = 10 and d = 5 is the number of expanded nodes in a worst case:

� N(id-dfs) = 6 + 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 456

� N(bfs) = 1 + 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 111

ID-DFS expands just 11% nodes more, which pays off due to the huge memory savings.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS



pComparison of strategies

Criterion/algorithm BFS DFS DL-DFS ID-DFS BiDir

time bd bm bl bd b
d
2

space bd bm bl bd b
d
2

optimality yes no no yes yes

completeness yes no yes (for l ≥ d) yes yes

where b is branching factor, d is a depth of shallowest solution, m is maximum tree depth, l is

depth limit.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

/IDDFS


