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Initial remarks on Artificial Intelligence

Artificial intelligence as a:

m Approach to research and understanding of intelligence

= Approach to development of algorithms with characteristics of Al (which necessarily doesn't
have to be human):

— Decision support, optimization of decision trees, decision autonomy
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Initial remarks on Artificial Intelligence

Artificial intelligence as a science about human reasoning and nature of human knowledge
by modeling them by computers can be divided into following schools:

= symbolic functionalism — intelligence represented in symbols and mutual manipulations exam-
ples: knowledge systems, automated reasoning, planning

m connectionism — inspired by natural processes, emergency of intelligent behavior, high number
of similar small connected and interacting units example: neural networks

= robotic functionalism (behavioralism)— based on assumption that combining high number of
unintelligent processes (black boxes) can lead to intelligent behavior

example: intelligent robotics

= hybrid and other approaches: multi-agent systems, genetic algorithms, artificial life, ...
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Initial remarks on Artificial Intelligence

= Strong Al (Bretano): intelligence, which invokes mental states identical with mental states
common to human understanding (extreme definition)
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Initial remarks on Artificial Intelligence

s Strong Al (Bretano): intelligence, which invokes mental states identical with mental states
common to human understanding (extreme definition)

s Weak Al (Turing): such an understanding of inputs so that it makes the system to react
intelligently (as human)
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Initial remarks on Artificial Intelligence

s Strong Al (Bretano): intelligence, which invokes mental states identical with mental states
common to human understanding (extreme definition)

s Weak Al (Turing): such an understanding of inputs so that it makes the system to react
intelligently (as human)

s Middling Al (Smith): the right type of behavior reacting to given precepts is done through
an appropriate knowledge structures and reasoning machinery
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Initial remarks on Artificial Intelligence

s Strong Al (Bretano): intelligence, which invokes mental states identical with mental states
common to human understanding (extreme definition)

s Weak Al (Turing): such an understanding of inputs so that it makes the system to react
intelligently (as human)

s Middling Al (Smith): the right type of behavior reacting to given precepts is done through
an appropriate knowledge structures and reasoning machinery

= Turing test - test for a weak Al.

= Turing machine - example of abstract machine, which could be used to model any algorithm,
computer program.
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Initial remarks on Artificial Intelligence

Symbolic functionalism is based on modeling of two basic aspects of intelligent behavior:

= knowledge

m reasoning

Both can be modeled on various levels of details. Strong methods allow general reasoning

models, while weak methods are specific.

:: Simplified task of Al according to the symbolic functionalism can thus be formulated as: how
to represent the right knowledge and to to program such a reasoning mechanisms that will extend
out knowledge base with new hypotheses.

/AT Concepts
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Initial remarks on Artificial Intelligence

Having two extreme cases of Al according to the symbolic functionalism:

= strong — knowledge is represented by a predicate logic terms and symbols and reasoning
model is represented by a deductive reasoning

= weak — knowledge is represented as a set of statements and reasoning is represented by a set
of if-then clauses

In both cases is the set of newly acquired knowledge (either induced or hypothetic) huge and it
is necessary to search and create it efficiently. Search strategy is thus a part of the reasoning
model. Space of newly acquired knowledge is called state space. Durng the problem solving the
state space is composed from partial solutions or auxiliary hypothesis. Some partial solutions are
classified as goal states.
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State Space

Problem solving, as one of aspects of intelligent reasoning, is considered as o problem of
finding (from initial state sg) of such a state s,, which has features that we require —
goal(s,). Such states we call goal states — s;40,. In some cases the problem solving is
defined as a problem of finding a path from initial to goal state. In such a case we don't

search space of nodes, but space of paths.

State space search problem is defined by

= initial state - s
= goal test — goal(s,)
m successor function - a set of action-state pairs,

m path cost, evaluation of costs of applying actions

Examples: 8-queens problem, cryptarithmetics, chess, 8-puzzle, reasoning in math, natural lan-
guage processing, planning and scheduling, robotic navigation

Situation becomes complicated in cases, when state space changes dynamically — e.g. in dynamic
environment or playing games with adversarial opponent.
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Example: The 8-puzzle

3 3 1 6 7 3

Start State Goal State
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Example: 8-queens

Partial solution of 8-queens problem
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Example: Cryptarithmetic

forty solution: 19786 e.g. f=1, 0=9, r=7, etc.
+ ten + 850
+ ten + 850
sixty 21486
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Example: Travelling salesman
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SEARCH: State space search

Similar to modeling of artificial intelligence during the state space search we face problems

with

— implementation of actions (expand function), infinite loop
prevention, ...

— decision which action to apply as a first, estimations, heuristic functions

What are our requirements on successful algorithm?

= does it always find a solution if one exists, does if search whole state space? —
= does it halt or will it run forever?
= does it always find a least-cost solution? —

= what is a complexity of algorithm? — and complexity
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Prohledavani Stavového Prostoru
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Prohledavani Stavového Prostoru

e-tile is in
— move right

col-1 or col-2
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Prohledavani Stavového Prostoru s
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Prohledavani Stavového Prostoru
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Prohledavani Stavového Prostoru
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Strategies of uninformed state space search

forward chaining

m searches the space from start to end,
m applies actions to find new states,

m process goes iteratively while solution if found

backward chaining

searches the space from end to start,

m looks for actions, which generate current state

conditions of those actions generate new goals

process goes iteratively to state, which describes given problem
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¢

Strategies of uninformed state space search b |

Alternate strategies (Bidirectional search), searches the spaces from both sides
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Strategies of uninformed state space search

Search strategies are also divided according to the order in which actions are applied

0 always applies actions on latest expanded node, in case of failure it applies
backtracking

= first searches all states which have a same distance from initial state,
before expanding on a new layer

During the state space search we work with:

1. dynamically generated state space in a form of oriented graph
2. s data structures: lists that are used for state space search:

m open list — list of open states, used to control the state expansion

m closed list — list of searched states, used to prevent infinite loops
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Breadth First Search (BFS)

begin
open := [Start]
while (open <> []) do begin
X := first(_open)
open := open - [X]
if X = GOAL then return(SUCCESS)
else begin
E := expand(X)
open := open + E
end
end
return(failure)
end.

mark <> means not equal,
operator - means remove of element(s) from list

operator + means add element(s) at the end of list

i B E E B R EEEEEEEEEEEEE R ER0O0O0OD0ODODODODODODOOObODOODODCOOODO /BFS
oobooooooooooooooobbobobooooooaoao



Remark - analysis of algorithm complexity

function SUM(seq)
sum <= 0
for i : 1 to length(seq)
sum = sum + seq(i)
return sum

= how long will algorithm run? (simplification: algorithm run is equal to the number of opera-
tions)
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Remark - analysis of algorithm complexity

function SUM(seq)
sum <= 0
for i : 1 to length(seq)
sum = sum + seq(i)
return sum

= how long will algorithm run? (simplification: algorithm run is equal to the number of opera-
tions)

— for length(seq) =n, T(n) =2n + 2

— for different n we can work with T'(n)40g @ T'(1)worst
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Remark - analysis of algorithm complexity

function SUM(seq)
sum <= 0
for i : 1 to length(seq)
sum = sum + seq(i)
return sum

= how long will algorithm run? (simplification: algorithm run is equal to the number of opera-
tions)

— for length(seq) =n, T(n) =2n + 2

— for different n we can work with T'(n)40g @ T'(1)worst

m asymptotic analysis of algorithm?

—T(n)~O(f(n) if T(n) <kf(n)+cVn
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Remark - analysis of algorithm complexity

s classification of problems:
— P problems - (e.g.: O(n*),0(logn))
— NP problems - nondeterministic P problems, deterministic exponential complexity on Turing
machine

— NP hard - hardest from NP class, i.e each problem from NP can be transformed into a
solution of NP hard problem

— NP-complete problems - class of NP problems, which are NP hard and in NP
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

/BFS
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete ?

/BFS
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete: YES (if b is finite)

/BFS
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete: YES (if b is finite)

= time ?

/BFS
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,

d - lowest tree depth, where solution can be found and m maximum tree depth - could be
0.

= complete: YES (if b is finite)

s time: 1+0+024+0%+ ...+ b+ b(b? — 1) = O(b*!) - according to algorithm given on slide
21, we count number of expanded nodes (maximum number of nodes in open list), valid only

if m > d (else O(b%)).
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete: YES (if b is finite)

s time: 1 +b6+b2+0%+ ... 4+ b? = O(b?) - could be implemented in case, if we test expanded
node for solution immediately after the expansion (see algorithm on following slide) — we
assume this algorithm while studying algorithm complexity in the rest of the lecture.

/BFS
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Properties of BFS

begin
if Start = GOAL then return(SUCCESS)
while (_open <> []) do begin

X := first(open)

open := open - [X]

else begin
E := expand(X)
if for any Y in E: Y = GOAL then return(SUCCESS)

else open := open + E
end
end
return(failure)
end.
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.
s complete: YES (if b is finite)
s time: 1+b0+ 02+ 0%+ ... +0 = O(b?)

= space ?
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

s complete: YES (if b is finite)
s time: 1+b0+ 02+ 0%+ ... +0 = O(b?)
= space: O(b?)
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be
0.

s complete: YES (if b is finite)
s time: 1+b0+ 02+ 0%+ ... +0 = O(b?)
= space: O(b?)

= optimal ?
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be
0.

= complete: YES (if b is finite)
o time: 140+ + 0+ ...+ =07
= space: O(b?)

= optimal: yes, if we optimize depth
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Properties of BFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete: YES (if b is finite)
o time: 140+ + 0+ ...+ =07
= space: O(b?)

= optimal: yes, if we optimize depth

Space is the biggest problem - you can easily generate more than 100MB/sec

/BFS
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Prohledavani do sitky — Breadth First Search (BFS) 1
Depth Nodes Time Memory

0 | I millisecond 100 bytes

2 111 .1 seconds 11 kilobytes

4 11,111 11 seconds I megabyte

6 10° 18 minutes 111 megabytes

8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte

12 10'? 35 years 111 terabytes

14 10 3500 years 11,111 terabytes
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Prohledavani do hloubky — Depth First Search (DFS) 'i:
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Prohledavani do hloubky — Depth First Search (DFS) “,,
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Prohledavani do hloubky — Depth First Search (DFS) iy
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Prohledavani do hloubky — Depth First Search (DFS)
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Prohledavani do hloubky — Depth First Search (DFS)
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Properties of DFS

Algorithm, which doesn’t care about loops:

begin
open := [Start]
while (open <> []) do begin
X := first(open)
open := open - [X]
if X = GOAL then return(SUCCESS)
else begin
E := expand(X)
open := E + open
end
end
return(failure)
end.
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Properties of DFS

Algorithm, which prevents infinite looping using a closed list:

begin
open := [Start], closed := []
while (open <> []) do begin
X := first(open)
closed := closed + [X], open := open - [X]
if X = GOAL then return(SUCCESS)
else begin
E := expand(X)
E := E - closed

open := E + open
end
end
return(failure)
end.
EE EEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEE /DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

/DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete 7

/DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

= complete: NO (even if b is bounded, due to the possible existence of loops)

/DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

00.
= complete: NO (even if b is bounded, due to the possible existence of loops)

s time?

/DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

s complete: NO (even if b is bounded, due to the possible existence of loops)

= time: 0™ — i.e. exponentially by m, problems, if m is much larger than d.

/DFS
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

s complete: NO (even if b is bounded, due to the possible existence of loops)
= time: 0™ — i.e. exponentially by m, problems, if m is much larger than d.

= space ?
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be

Q.

s complete: NO (even if b is bounded, due to the possible existence of loops)
= time: 0™ — i.e. exponentially by m, problems, if m is much larger than d.

= space: O(bm)
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be
0.

s complete: NO (even if b is bounded, due to the possible existence of loops)
= time: 0™ — i.e. exponentially by m, problems, if m is much larger than d.
= space: O(bm)

= optimal ?
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Properties of DFS

Let b be maximum branching factor (highest number of edges from any node) of given tree,
d - lowest tree depth, where solution can be found and m maximum tree depth - could be
0.

s complete: NO (even if b is bounded, due to the possible existence of loops)
= time: 0™ — i.e. exponentially by m, problems, if m is much larger than d.
= space: O(bm)

= optimal: no
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Alternate strategies

depth-first search with depth limit [

depth-first search with iteratively increasing depth limit [

Algorithm:

1.l=1
2. do DL-DFS with depth !

3. if solution found end
else [ =[+1agoto?2

/IDDFS
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Algoritmus IDDFS prohledavani
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Algoritmus IDDFS prohledavani
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Algoritmus IDDFS prohledavani
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Algoritmus IDDFS prohledavani
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Iterative deepening search

= complete ?
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Iterative deepening search tf*
= complete: YES (if b is bounded)
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Iterative deepening search

Tﬁ_

= complete: YES (if b is bounded)

= time?

i B E E R EEEEENEEEE NN EEEEEEEEEEEEEEEEEEEEENEECRE
H E E E N EEEEEEEEEEEEEEEO0OOOOOODOOO

/IDDFS



Iterative deepening search

= complete: YES (if b is bounded)
w time: d+ 1+ (d)b+ (d— 1) + (d—2)b + ... + b < db? = O(b?)

if we assume thet each search is carried out by algorithm with complexity O(b')
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Iterative deepening search e

= complete: YES (if b is bounded)
w time: d+ 1+ (d)b+ (d— 1) + (d—2)b + ... + b < db? = O(b?)

= space ?
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Iterative deepening search e

= complete: YES (if b is bounded)
s time: d+ 1+ (d)b+ (d— 10>+ (d — 2)b> + ... + b < db? = O(b?)
= space: O(bd)
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Iterative deepening search

= complete: YES (if b is bounded)
s time: d+ 1+ (d)b+ (d— 10>+ (d — 2)b> + ... + b < db? = O(b?)
= space: O(bd)
= optimal ?
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Iterative deepening search

complete: YES (if b is bounded)
time: d+ 1+ (d)b+ (d — 1)b* + (d — 2)b* + ... + b < db? = O(b?)
space: O(bd)

optimal: yes, if we optimize depth
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Iterative deepening search

complete: YES (if b is bounded)
time: d+ 1+ (d)b+ (d — 1)b* + (d — 2)b* + ... + b < db? = O(b?)
space: O(bd)

optimal: yes, if we optimize depth

:: comparison: for b = 10 and d = 5 in a worst case:
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Iterative deepening search

complete: YES (if b is bounded)
time: d+ 1+ (d)b+ (d — 1)b* + (d — 2)b* + ... + b? < db? = O(b?)
space: O(bd)

optimal: yes, if we optimize depth

:: comparison: for b = 10 and d = 5 is the number of expanded nodes in a worst case:

s N(id-dfs) = 6 + 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 456
s N(bfs) = 1+ 10 + 100 + 1,000 + 10, 000 + 100, 000 = 111,111

ID-DFS expands just 11% nodes more, which pays off due to the huge memory savings.
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Comparison of strategies

Criterion/algorithm | BFS | DFS DL-DFS ID-DFS | BiDir
time bl | b bl | b
space b | bm bl bd | b
optimality yes | no no yes yes
completeness yes | no |yes (forl >d)| vyes yes

where b is branching factor, d is a depth of shallowest solution, m is maximum tree depth, [ is

depth limit.
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