
Cybernetics and Artificial Intelligence

4. Clustering and neural networks

laboratory

Gerstner

Gerstner laboratory
Dept. of Cybernetics

Czech Technical University in Prague

Summary of the last lecture

� We know pdf and its parameters. We can use Bayes theorem applying maximum a posteriori

approach, arg maxs p(s|x, µs, σs)

� In case of Gaussian distribution we get quadratic discrimination function, in case of equal

covariance we obtain linear function

� Linear discrimination fce (without pdf knowledge), parameters estimation leads to percepton

algorithm

� Zero error classification only for linear separable data

� Non-linear separable problem

− Transformation of features to higher dimension, e.g. using quadratic transformation

− Using more sophisticated classifiers, e.g. neural nets

− Decision trees: discrimination boundaries, construction →, entropy meassures

Clustering

� No training data

� Natural clusters

� (a) k-means, (b) fuzzy clustering (c) probability using probability mixture , (d) hierarchical

clustering (dendogram)

K-means

1. beginInicialize k, µ1, µ2, . . . , µk

2. do classify sample according to nearest

µi

3. update µi

4. until no change µi

5. return µ1, µ2, . . . , µk

6. end

Hierarchical clustering

� agglomerative: bottom-up → merging

� divisive: top-down → splitting

1. begin Initializek, k̂ ← n,Di ← {Xi}, i = 1, . . . , n

2. do k̂ = k̂ − 1

3. find nearest clusters. Di a Dj
4. until k = k̂

5. return k clusters

6. end

� dmin(x, x
′
) = min ‖x− x′‖, x ∈ Di, x

′ ∈ Di

Hierarchical clustering - example

[Giant Nerve Cells of Squid]

[Voltage Clamp Method]

[Hodgkin–Huxley model]

Obrázek 1: Typical form of an action potential; redrawn from an oscilloscope picture from Hodgkin

and Huxley (1939).

[The minimal mechanisms]

Resting potential

+Na +Na

+Na +Na+Na

+K

+K

+K

+K

+K

+K

+K +K

+K

+Na

Depolarization

+Na

+Na +Na+Na
+Na

+Na+K

+K

+K

+K

+K

+K
+K

+K

+K

+Na

Hyperpolarization

+Na
+Na +Na

+Na
+Na

+Na

+K

+K

+K
+K

+K

+K

+K

+K

+K

+K

[Concentration of Na,K]

[HH stucture]

� Iion = ˆgion(V − Eion)

� voltage and time dependent variables n(V, t),m(V, t),h(V, t)

ĝK(V, t) = gKn
4

ˆgNa(V, t) = gNam
3h

EK

KRNaRRL

C

Iext

E EL Na

External input

Capacitor Resistance of ion channels

Reversal potentials of ion
channels

EK

[Hodgkin–Huxley equations and simulation]

C
dV

dt
= −gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL) + Iext(t)

τn(V)
dn

dt
= −[n− n0(V)]

τm(V)
dm

dt
= −[m−m0(V)]

τh(V)
dh

dt
= −[h− h0(V)]

dx

dt
= − 1

τx(V)
[x− x0(V)]→ x(t + ∆t) = (1− ∆t

τx
)x(t) +

∆t

τx
x0

 Spike train with constant input

0 50 100
 50

0

50

100

150

Time [ms]

M
em

br
an

e
po

te
nt

ia
l

[m
V]

 Activation function

0 5 10 15
0

20

40

60

80

100

External current [mA/cm]

Fi
rin

g
fre

qu
en

cy
 [H

z]

2

Noise

[Ion channels resistance]

x(0) =
α

α + β
, tx = αβ, x ∈= {n,m, h}

αn =
10− V

100(e
10−V
10 −1)

, βn = 0.125e−
V
80

αm =
25− V

10(e
25−V
10 −1)

, βm = 4e−
V
18

αh = 0.07e
V
20 , βh =

1

e
30−V
10 + 1

[Matlab implementation]

Neuron definition

� Neuron is basic computational unit

� Inputs xi are weighted by ωi

� net =
∑n

i=1 xiωi + w0 =
∑n

i=0 ~w
t~x

� We indtoduce non-linearity to nrural nets y = f (net), e.g. sigmoid fce: tanh or logistic fce

y = f (net) = 1
1+exp−λ∗net

Physiology

� Nobel prize for medicine - year 1932)

http://nobelprize.org/nobel_prizes/medicine/laureates/1932/adrian-bio.html#

http://nobelprize.org/nobel_prizes/medicine/laureates/1932/adrian-bio.html#

3-layers neural net(d− nH − c)

� The first layer is input layer, activation fce is linear, number of neurons equal to dimension of

input vector 1 . . . d

� The second layer is hidden layer, arbitrary number of neurons, 1 . . . nH

� The third layer is output layer, number of neurons equal to number of classes, 1 . . . c

Example 3-layer neural net - XOR problem

� 0
⊕

0 = 0, 1
⊕

1 = 0, 1
⊕

0 = 1, 0
⊕

1 = 1

� −1
⊕
−1 = −1, 1

⊕
1 = −1, 1

⊕
−1 = 1, −1

⊕
1 = 1

XOR problem solution

� Hidden neuron decision boundary y1

x1 + x2 + 0, 5 = 0

{
≥ 0 if y1 = +1

< 0 if y1 = −1

� Hidden neuron decision boundary y2

x1 + x2 − 1.5 = 0

{
≥ 0 if y2 = +1

< 0 if y2 = −1

� Neuron in output layer z

0.7y1 − 0.4y2 − 1 = 0

{
≥ 0 if z = +1

< 0 if z = −1

Neuron activation

� Activation netj of neuron in the hidden layer netj =
∑d

i=1 xiwji+wj0 =
∑d

i=0 xiwji = ~wj
t~x

� i indexes output layer, j hidden layer, wji is neuron weight in j hidden layer, which is connected

to input neuron i (synapse).

� Neuron output in hidden layer yj = f (netj)

� XOR problem

f (net) = sgn(net)

{
1 net ≥ 0

−1 net < 0

� fce f (.) is call activation fce.

� Similarly, activation fce netk of neuron in output layer is netk =
∑nH

j=1 yjwkj + wk0 =∑nH
j=0 yjwkj = ~wk

t~y

� k index neuron in output layer, nH is number of hidden neurons

� Neuron output in output layer zk = f (netk)

� In case of c classes, net computes c discrimination fces zk = gk(~x) and classifies input ~x

according to biggest discrimination fce gk(~x) ∀k = 1, . . . c

Forward operation

� Net output

gk(~x) = zk = f (

nH∑
j=1

wkjf (

d∑
i=1

wjixi + wj0) + wk0) ∀k = 1 . . . c

� Hidden layer enables realization of complicated non-linear fces

� Each neuron can have its own activation fce

� We suppose that we have only ONE type of activation fce

� QUESTION: Can 3-forward layer approximate any non-linear function?

� ANSWER: YES- thanks to A.Kolmogorov
Any continuous fce can be implemented by 3-layes net under assumption of
sufficient number of nH hidden neurons,suitable non-linearities and weights w.

Non-linear fce approximation

� Fourier transform ANALOGY

Example of decision surface

� Comparision of 2-layer and 3-layer net

Andrej Kolmogorov

� He constructed ”perpetuum mobile”in high school, his teacher could not discover the trick

� First he studied history in Moscow university

� He published the first scientific work on realities in Novgorod area during 15. a 16. centurary

� The biggest contribution in probability field

How can we learn the net ????

� Our goal is to set weights based on training data and desired output tk

� We devise the method for error back propagation

� Le’s tk is k real output and zk is output calculated , where k = 1, . . . , c. We define error as

J(~w) =
1

2

c∑
k=1

(tk − zk)2 =
1

2
‖ ~t− ~z ‖

� Back-propagation algorithm is based on gradient approach (see percepton). Weight are initi-

alized and changed according to steepest direction of error reduction

4~w = −η ∂J
∂ ~w

� η is learning parameter controlling relative weight change

~w(m + 1) = ~w(m) +4~w

� where m s m-th template (~xm, tm)

Deduction

� Weight error (hidden-output)

∂J

∂wkj
=
∂J

∂zk

∂zk
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

� Hence netk =
∑nH

j=0 yjwkj = ~wk
t~y, thus ∂netk

∂wkj
= yj

� where sensitivity of k-th neuron is defined as δk = − ∂J
∂netk

and describes, how the total error

changes with with activation fce netk, ∂zk
∂netk

= f
′
(netk)

δk = − ∂J
∂zk

∂zk
∂netk

= (tk − zk)f
′
(netk)

� Weights (hidden-output) are updated as

4wkj = ηδkyj = η(tk − zk)f
′
(netk)yj

� Weight error (input-hidden)
∂J

∂wji
=
∂J

∂yj

∂yj
∂netj

∂netj
∂wji

� Hence

∂J

∂yj
=

∂

∂yj

[
1

2

c∑
k=1

(tk − zk)2
]

= −
c∑

k=1

(tk − zk)
∂zk
∂yj

=

−
c∑

k=1

(tk − zk)
∂zk
∂netk

∂netk
∂yj

= −
c∑

k=1

(tk − zk)f
′
(netk)wkj

� So ∂netk
∂yj

= wkj, because netk =
∑nH

j=0 yjwkj = ~wk
t~y

� Thus ∂J
∂yj

= −
∑c

k=1 δkwkj, because δk = (tk − zk)f
′
(netk)

� Let’s define
∂yj
∂netj

= f
′
(netj)

� Let’s
∂netj
∂wji

= xi,because netj =
∑d

i=0 xiwji = ~wj
t~x

� let’s define sensitivity for hidden unit. Sensitivity is weighted sum of output sensitivities, mul-

tiplyed by activation fce of hidden neuron

∂J

∂wji
=
∂J

∂yj

∂yj
∂netj

∂netj
∂wji

= −
c∑

k=1

δkwkjf
′
(netj)︸ ︷︷ ︸

δj

xi

Why back-propagation ?

� The rule for weight update (input-hidden) is

4wji = ηxiδj = η
∑

(wkjδk)f
′
(netj)xi

Pseudo-code

� incremental learning - stochastic

− Matlab implementation: Backpropa-

gation Stochastic.m. tanh, a = 1.716,

b = 2
3, so f

′
(0) ' 1.

f (net) = a tanh(b?net) =
2a

1 + expb?net
− a

Batch learning

� We have n inputs ~xi , we express total error as

J =

n∑
p=1

Jp

� It is not necessary to select inputs one by one

� Epoch is one representation of all inputs , step 2: r = r + 1

Validation

� Error of training sert in monotonic-decreasing fce because of gradient algorithm optimization

� we devide data to training and validation set We use validation as stopping criteria (e.g. the

first minimum)

� DEMO - Neural Network Toolbox v Matlabu

http://www.mathworks.com/products/neuralnet/

� Data are from UCI Machine Learning Repository

http://mlearn.ics.uci.edu/MLRepository.html

http://www.mathworks.com/products/neuralnet/
http://mlearn.ics.uci.edu/MLRepository.html

