Cybernetics and Artificial Intelligence

4. Clustering and neural networks

Geistmer
Gerstner laboratory
Dept. of Cybernetics
Czech Technical University in Prague

Summary of the last lecture

- We know pdf and its parameters. We can use Bayes theorem applying maximum a posteriori approach, $\arg \max _{s} p\left(s \mid x, \mu_{s}, \sigma_{s}\right)$
- In case of Gaussian distribution we get quadratic discrimination function, in case of equal covariance we obtain linear function
- Linear discrimination fce (without pdf knowledge), parameters estimation leads to percepton algorithm
- Zero error classification only for linear separable data
- Non-linear separable problem
- Transformation of features to higher dimension, e.g. using quadratic transformation
- Using more sophisticated classifiers, e.g. neural nets
- Decision trees: discrimination boundaries, construction \rightarrow, entropy meassures

Clustering

- No training data
- Natural clusters
- (a) k-means, (b) fuzzy clustering (c) probability using probability mixture , (d) hierarchical clustering (dendogram)

(a)

	1	2	3
a	0.4	0.1	0.5
b	0.1	0.8	0.1
c	0.3	0.3	0.4
d	0.1	0.1	0.8
e	0.4	0.2	0.4
f	0.1	0.4	0.5
g	0.7	0.2	0.1
h	0.5	0.4	0.1
(c)			

(b)

K-means

1. beginInicialize $k, \mu_{1}, \mu_{2}, \ldots, \mu_{k}$
2. do classify sample according to nearest μ_{i}
3. update μ_{i}
4. until no change μ_{i}
5. return $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$

6 . end

Hierarchical clustering

- agglomerative: bottom-up \rightarrow merging
- divisive: top-down \rightarrow splitting

1. begin Initialize $k, \hat{k} \leftarrow n, \mathcal{D}_{i} \leftarrow\left\{X_{i}\right\}, i=1, \ldots, n$
2. do $\hat{k}=\hat{k}-1$
3. find nearest clusters. \mathcal{D}_{i} a \mathcal{D}_{j}
4. until $k=\hat{k}$
5. return k clusters

6 . end

- $d_{\text {min }}\left(x, x^{\prime}\right)=\min \left\|x-x^{\prime}\right\|, x \in \mathcal{D}_{i}, x^{\prime} \in \mathcal{D}_{i}$

Hierarchical clustering - example

[Giant Nerve Cells of Squid]

[Voltage Clamp Method]

[Hodgkin-Huxley model]

Obrázek 1: Typical form of an action potential; redrawn from an oscilloscope picture from Hodgkin and Huxley (1939).
[The minimal mechanisms]

[Concentration of Na, K]

- $I_{\text {ion }}=\hat{g_{\text {ion }}}\left(V-E_{i o n}\right)$
- voltage and time dependent variables $n(V, t), m(V, t), h(V, t)$

[Hodgkin-Huxley equations and simulation]

$$
\begin{aligned}
C \frac{\mathrm{~d} V}{\mathrm{~d} t} & =-g_{\mathrm{K}} n^{4}\left(V-E_{\mathrm{K}}\right)-g_{\mathrm{Na}} m^{3} h\left(V-E_{\mathrm{Na}}\right)-g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)+I_{e x t}(t) \\
\tau_{\mathrm{n}}(V) \frac{\mathrm{d} n}{\mathrm{~d} t} & =-\left[n-n_{0}(V)\right] \\
\tau_{\mathrm{m}}(V) \frac{\mathrm{d} m}{\mathrm{~d} t} & =-\left[m-m_{0}(V)\right] \\
\tau_{\mathrm{h}}(V) \frac{\mathrm{d} h}{\mathrm{~d} t} & =-\left[h-h_{0}(V)\right] \\
\frac{d x}{d t} & =-\frac{1}{\tau_{x}(V)}\left[x-x_{0}(V)\right] \rightarrow x(t+\Delta t)=\left(1-\frac{\Delta t}{\tau_{x}}\right) x(t)+\frac{\Delta t}{\tau_{x}} x_{0}
\end{aligned}
$$

[Ion channels resistance]

$$
\begin{aligned}
x(0) & =\frac{\alpha}{\alpha+\beta}, t_{x}=\alpha \beta, x \in=\{n, m, h\} \\
\alpha_{n} & =\frac{10-V}{100\left(e^{\left.\frac{10-V}{10}-1\right)}\right.}, \beta_{n}=0.125 e^{-\frac{V}{80}} \\
\alpha_{m} & =\frac{25-V}{10\left(e^{\left.\frac{25-V}{10}-1\right)}\right.}, \beta_{m}=4 e^{-\frac{V}{18}} \\
\alpha_{h} & =0.07 e^{\frac{V}{20}}, \beta_{h}=\frac{1}{e^{\frac{30-V}{10}}+1}
\end{aligned}
$$

[Matlab implementation]

```
%% Integration of Hodgkin--Huxley equations with Euler method
    clear; figure;%clf;
%%%
    % Maximal conductances (in units of mS/cm^2); 1=K, 2=Na, 3=R
    g(1)=36; g(2)=120; g(3)=0.3;
    % Battery voltage ( in mV); 1=n, 2=m, 3=h
    E(1)=-12; E(2)=115; E(3)=10.613;
    % Initialization of some variables
    I_ext=0; V=-10; x=zeros(1,3); x(3)=1; t_rec=0;
    % Time step for integration
    dt=0.01;
%%%% Integration with Euler method
    for t=-30:dt:500|
        if t==10; I_ext=6; end % turns external current on at t=10
        if t==400; \overline{I_ext=0; end % turns external current off at t=40}0
    % alpha functions used by Hodgkin-and Huxley
        Alpha(1)=(10-V)/(100* (exp ((10-V)/10)-1));
        Alpha(2)=(25-V)/(10*(\operatorname{exp}((25-V)/10)-1));
        Alpha(3)=0.07* exp(-V/20);
    % beta functions used by Hodgkin-and Huxley
        Beta(1)=0.125* exp(-V/80);
        Beta(2)=4*exp(-V/18);
        Beta(3)=1/(}\operatorname{exp}((30-V)/10)+1)
    % tau_x and x_0 (x=1,2,3) are defined with alpha and beta
        tau=1./(Alpha+Beta);
        x_0=Alpha.*tau;
    % leaky integration with Euler method
        x=(1-dt./tau).*x+dt./tau.*x_0;
        % x is m,n,h
    % calculate actual conductances g with given n, m, h
        gnmh(1)=g(1)*x(1)^4;
        gnmh(2)=g(2)*x(2)^ 3*x(3);
        gnmh(3)=g(3);
    % Ohm's law
        I=gnmh.*(V-E);
    % update voltage of membrane
        V=V+dt*(I_ext-sum(I));
    % record some variables for plotting after equilibration
        if t>=0;
            t_rec=t_rec+1;
            x pl.ot.(t_rec)=t;
            y_ploo(t_rec)=V;
        end
```


Neuron definition

- Neuron is basic computational unit
- Inputs x_{i} are weighted by ω_{i}
- net $=\sum_{i=1}^{n} x_{i} \omega_{i}+w_{0}=\sum_{i=0}^{n} \vec{w}^{t} \vec{x}$
- We indtoduce non-linearity to nrural nets $y=f(n e t)$, e.g. sigmoid fce: tanh or logistic fce $y=f(n e t)=\frac{1}{1+\exp ^{-\lambda * n e t}}$

Physiology

- Nobel prize for medicine - year 1932)
http://nobelprize.org/nobel_prizes/medicine/laureates/1932/adrian-bio.html\#

3-layers neural $\operatorname{net}\left(d-n_{H}-c\right)$

- The first layer is input layer, activation fce is linear, number of neurons equal to dimension of input vector $1 \ldots d$
- The second layer is hidden layer, arbitrary number of neurons, $1 \ldots n_{H}$
- The third layer is output layer, number of neurons equal to number of classes, $1 \ldots c$

Example 3-layer neural net - XOR problem

- $0 \bigoplus 0=0,1 \oplus 1=0,1 \oplus 0=1,0 \bigoplus 1=1$
- $-1 \oplus-1=-1,1 \oplus 1=-1,1 \oplus-1=1,-1 \oplus 1=1$

XOR problem solution

- Hidden neuron decision boundary y_{1}

$$
x_{1}+x_{2}+0,5=0 \begin{cases}\geq 0 & \text { if } y_{1}=+1 \\ <0 & \text { if } y_{1}=-1\end{cases}
$$

- Hidden neuron decision boundary y_{2}

$$
x_{1}+x_{2}-1.5=0 \begin{cases}\geq 0 & \text { if } y_{2}=+1 \\ <0 & \text { if } y_{2}=-1\end{cases}
$$

- Neuron in output layer z

$$
0.7 y_{1}-0.4 y_{2}-1=0 \begin{cases}\geq 0 & \text { if } z=+1 \\ <0 & \text { if } z=-1\end{cases}
$$

Neuron activation

- Activation $n e t_{j}$ of neuron in the hidden layer net $_{j}=\sum_{i=1}^{d} x_{i} w_{j i}+w_{j 0}=\sum_{i=0}^{d} x_{i} w_{j i}=\vec{w}_{j}{ }^{t} \vec{x}$
- i indexes output layer, j hidden layer, $w_{j i}$ is neuron weight in j hidden layer, which is connected to input neuron i (synapse).
- Neuron output in hidden layer $y_{j}=f\left(\right.$ net $\left._{j}\right)$
- XOR problem

$$
f(\text { net })=\operatorname{sgn}(\text { net }) \begin{cases}1 & \text { net } \geq 0 \\ -1 & \text { net }<0\end{cases}
$$

- fce $f($.$) is call activation fce.$
- Similarly, activation fce $n e t_{k}$ of neuron in output layer is $\operatorname{net}_{k}=\sum_{j=1}^{n_{H}} y_{j} w_{k j}+w_{k 0}=$ $\sum_{j=0}^{n_{H}} y_{j} w_{k j}=\vec{w}_{k}^{t} \vec{y}$
- k index neuron in output layer, n_{H} is number of hidden neurons
- Neuron output in output layer $z_{k}=f\left(\right.$ net $\left._{k}\right)$
- In case of c classes, net computes c discrimination fces $z_{k}=g_{k}(\vec{x})$ and classifies input \vec{x} according to biggest discrimination fce $g_{k}(\vec{x}) \quad \forall k=1, \ldots c$

Forward operation

- Net output

$$
g_{k}(\vec{x})=z_{k}=f\left(\sum_{j=1}^{n_{H}} w_{k j} f\left(\sum_{i=1}^{d} w_{j i} x_{i}+w_{j 0}\right)+w_{k 0}\right) \quad \forall k=1 \ldots c
$$

- Hidden layer enables realization of complicated non-linear fces
- Each neuron can have its own activation fce
- We suppose that we have only ONE type of activation fce
- QUESTION: Can 3-forward layer approximate any non-linear function?
- ANSWER: YES- thanks to A.Kolmogorov

Any continuous fce can be implemented by 3-layes net under assumption of sufficient number of n_{H} hidden neurons,suitable non-linearities and weights w.

Non-linear fce approximation

- Fourier transform ANALOGY

Example of decision surface

- Comparision of 2-layer and 3-layer net

Andrej Kolmogorov

- He constructed "perpetuum mobile" in high school, his teacher could not discover the trick
- First he studied history in Moscow university
- He published the first scientific work on realities in Novgorod area during 15. a 16. centurary
- The biggest contribution in probability field

How can we learn the net ????

- Our goal is to set weights based on training data and desired output t_{k}
- We devise the method for error back propagation
- Le's t_{k} is k real output and z_{k} is output calculated, where $k=1, \ldots, c$. We define error as

$$
J(\vec{w})=\frac{1}{2} \sum_{k=1}^{c}\left(t_{k}-z_{k}\right)^{2}=\frac{1}{2}\|\vec{t}-\vec{z}\|
$$

- Back-propagation algorithm is based on gradient approach (see percepton). Weight are initialized and changed according to steepest direction of error reduction

$$
\triangle \vec{w}=-\eta \frac{\partial J}{\partial \vec{w}}
$$

- η is learning parameter controlling relative weight change

$$
\vec{w}(m+1)=\vec{w}(m)+\triangle \vec{w}
$$

- where $m \mathrm{~s}$ m-th template $\left(\vec{x}_{m}, t_{m}\right)$

Deduction

- Weight error (hidden-output)

$$
\frac{\partial J}{\partial w_{k j}}=\frac{\partial J}{\partial z_{k}} \frac{\partial z_{k}}{\partial n e t_{k}} \frac{\partial n e t_{k}}{\partial w_{k j}}=\delta_{k} \frac{\partial n e t_{k}}{\partial w_{k j}}
$$

- Hence $n e t_{k}=\sum_{j=0}^{n_{H}} y_{j} w_{k j}={\overrightarrow{w_{k}}}^{t} \vec{y}$, thus $\frac{\partial n e t_{k}}{\partial w_{k j}}=y_{j}$
- where sensitivity of k-th neuron is defined as $\delta_{k}=-\frac{\partial J}{\partial n e t_{k}}$ and describes, how the total error changes with with activation fce $n e t_{k}, \frac{\partial z_{k}}{\partial n e t_{k}}=f^{\prime}\left(\right.$ net $\left._{k}\right)$

$$
\delta_{k}=-\frac{\partial J}{\partial z_{k}} \frac{\partial z_{k}}{\partial n e t_{k}}=\left(t_{k}-z_{k}\right) f^{\prime}\left(n e t_{k}\right)
$$

- Weights (hidden-output) are updated as

$$
\Delta w_{k j}=\eta \delta_{k} y_{j}=\eta\left(t_{k}-z_{k}\right) f^{\prime}\left(n e t_{k}\right) y_{j}
$$

- Weight error (input-hidden)

$$
\frac{\partial J}{\partial w_{j i}}=\frac{\partial J}{\partial y_{j}} \frac{\partial y_{j}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}
$$

- Hence

$$
\begin{aligned}
\frac{\partial J}{\partial y_{j}}=\frac{\partial}{\partial y_{j}}\left[\frac{1}{2} \sum_{k=1}^{c}\left(t_{k}-z_{k}\right)^{2}\right] & =-\sum_{k=1}^{c}\left(t_{k}-z_{k}\right) \frac{\partial z_{k}}{\partial y_{j}}= \\
& -\sum_{k=1}^{c}\left(t_{k}-z_{k}\right) \frac{\partial z_{k}}{\partial n e t_{k}} \frac{\partial n e t_{k}}{\partial y_{j}}=-\sum_{k=1}^{c}\left(t_{k}-z_{k}\right) f^{\prime}\left(n e t_{k}\right) w_{k j}
\end{aligned}
$$

- So $\frac{\partial n e t_{k}}{\partial y_{j}}=w_{k j}$, because $n e t_{k}=\sum_{j=0}^{n_{H}} y_{j} w_{k j}=\vec{w}_{k}^{t} \vec{y}$
- Thus $\frac{\partial J}{\partial y_{j}}=-\sum_{k=1}^{c} \delta_{k} w_{k j}$, because $\delta_{k}=\left(t_{k}-z_{k}\right) f^{\prime}\left(\right.$ net $\left._{k}\right)$
- Let's define $\frac{\partial y_{j}}{\partial n e t_{j}}=f^{\prime}\left(\right.$ net $\left._{j}\right)$
- Let's $\frac{\partial n e t_{j}}{\partial w_{j i}}=x_{i}$, because net $_{j}=\sum_{i=0}^{d} x_{i} w_{j i}=\vec{w}_{j}{ }^{t} \vec{x}$
- let's define sensitivity for hidden unit. Sensitivity is weighted sum of output sensitivities, multiplyed by activation fce of hidden neuron

$$
\frac{\partial J}{\partial w_{j i}}=\frac{\partial J}{\partial y_{j}} \frac{\partial y_{j}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}=\underbrace{-\sum_{k=1}^{c} \delta_{k} w_{k j} f^{\prime}\left(n e t_{j}\right)}_{\delta_{j}} x_{i}
$$

Why back-propagation ?

- The rule for weight update (input-hidden) is

$$
\triangle w_{j i}=\eta x_{i} \delta_{j}=\eta \sum\left(w_{k j} \delta_{k}\right) f^{\prime}\left(n e t_{j}\right) x_{i}
$$

Pseudo-code

- incremental learning - stochastic

```
begin initialize network topology (\# hidden units), w, criterion \(\theta, \eta, m \leftarrow 0\)
    do \(m \leftarrow m+1\)
        \(\mathrm{x}^{m} \leftarrow\) randomly chosen pattern
        \(w_{i j} \leftarrow w_{i j}+\eta \delta_{j} x_{i} ; \quad w_{j k} \leftarrow w_{j k}+\eta \delta_{k} y_{j}\)
    until \(\nabla J(\mathbf{w})<\theta\)
return w
end
```

- Matlab implementation: Backpropagation_Stochastic.m. tanh, $a=$ 1.716, $b=\frac{2}{3}$, so $f^{\prime}(0) \simeq 1$.

$$
f(n e t)=a \tanh (b \star n e t)=\frac{2 a}{1+\exp ^{b \star n e t}}-a
$$

Batch learning

- We have n inputs $\overrightarrow{x_{i}}$, we express total error as

$$
J=\sum_{p=1}^{n} J_{p}
$$

- It is not necessary to select inputs one by one
- Epoch is one representation of all inputs, step 2: $r=r+1$

```
    1 begin initialize network topology (\# hidden units), w, criterion \(\theta, \eta, r \leftarrow 0\)
    2 do \(r \leftarrow r+1\) (increment epoch)
\(3 \quad m \leftarrow 0 ; \Delta w_{i j} \leftarrow 0 ; \Delta w_{j k} \leftarrow 0\)
\(4 \quad\) do \(m \leftarrow m+1\)
\(5 \quad \mathbf{x}^{m} \leftarrow\) select pattern
\(6 \quad \Delta w_{i j} \leftarrow \Delta w_{i j}+\eta \delta_{j} x_{i} ; \quad \Delta w_{j k} \leftarrow \Delta w_{j k}+\eta \delta_{k} y_{j}\)
7 until \(m=n\)
\(w_{i j} \leftarrow w_{i j}+\Delta w_{i j} ; \quad w_{j k} \leftarrow w_{j k}+\Delta w_{j k}\)
    until \(\nabla J(\mathbf{w})<\theta\)
return \(w\)
end
```


Validation

- Error of training sert in monotonic-decreasing fce because of gradient algorithm optimization
- we devide data to training and validation set We use validation as stopping criteria (e.g. the first minimum)

- DEMO - Neural Network Toolbox v Matlabu
http://www.mathworks.com/products/neuralnet/
- Data are from UCI Machine Learning Repository
http://mlearn.ics.uci.edu/MLRepository.html

