
Cybernetics and Artificial Intelligence

2. Machine Learning

laboratory

Gerstner

Gerstner laboratory
Dept. of Cybernetics

Czech Technical University in Prague

Last lecture’s wrap-up

� Bayes classification: classify into arg maxs P (s|~x).

� The Bayes classifier has the smallest risk (classification error) among all classifiers.

� Bayes classification rests upon knowing the true distribution P (s|~x).

� Usually we are not given P (s|~x) or P (~x, s), only a i.i.d random sample therefrom. Without

any prior knowledge on P (~x, s), it gets very hard to estimate it from the sample as the number

of components in ~x grows.

� The computational curse would not manifest itself if components of ~x were statistically inde-

pendent, but that is rarely the case.

� A more realistic assumption, also avoiding the computational curse, is that the form of dis-

tribution P (~x|s) is known and only its parameters should be estimated from the training

sample.

Distributional Assumption

� The normal density

N(x, µ, σ) =
1

σ
√

2π
exp
−(x− µ)2

2σ2

� Notable properties:

− Central limit theorem: The effect of a sum of a large number of small independent random

disturbances (however distributed) leads to the normal distribution.

− Of all densities f (x) of a random variable X with given mean and variance, the normal

density has the greatest entropy H(X) =
∫∞
−∞ f (x) log2 f (x)dx.

� Given a single real scalar attribute, the normal distribution assumption proposes that for

each class s, the conditional density of x is:

f (x|s) = N(x, µs, σs)

� Often, distributional parameters are explicitly shown in the conditional part:

f (x|s, µs, σs) = N(x, µs, σs)

Classifying under normal attribute distribution

� Under the normal distribution assumption, for Bayes optimal classification we proceed as

follows

arg max
s
f (s|x, µs, σs) = arg max

s

f (x|s, µs, σs)P (s)

f (x)
= arg max

s
f (x|s, ~φ)P (s)

= arg max
s

1

σs
√

2π
exp
−(x− µs)2

2σ2s
· P (s) = arg max

s
ln

(
1

σs
√

2π
exp
−(x− µs)2

2σ2s
· P (s)

)

= arg max
s

−1

2
lnσ2s −

1

2
ln 2π+︸ ︷︷ ︸

can drop

−(x− µs)2

2σ2s
+ lnP (s)

= arg max

s

(
−1

2
lnσ2s −

1

2σ2s

(
x2 − 2xµs + µ2s

)
+ lnP (s)

)
= arg max

s
asx

2 + bsx + cs

where

as = −1
2 lnσ2s bs = µs

σ2s
cs = −1

2 lnσ2s −
µ2s
2σ2s

+ lnP (s)

� A quadratic discriminant function thus defined for each s ∈ S,

gs(x) = asx
2 + bsx + cs

Using discriminant functions: for a given x, classify into maxs gs(x).

Normal distribution, same std. deviation σ (same variance σ2)

� Simple case: same std. deviations. Example: s = {male, female}, x = height.

� Since ∀s σs = σ, further simplification is possible

max
s
P (s|x, µs, σ) = max

s

− x2

2σ2
+︸ ︷︷ ︸

can drop

1

2σ2
(
2xµs − µ2s

)
+ lnP (s)

 = max
s

(bs · x + cs)

where bs = µs
σ2

and cs = − µ2s
2σ2

+ lnP (s).

� Here, the discriminant function is linear:

gs(x) = bsx + cs

The multivariate case

� The multivariate case (~x now a n-component real vector, ~x ∈ <n)

N(x, ~µ,Σ) =
1√

(2π)n det(Σ)
exp

[
−1

2
(~x− ~µ)t|Σ|(~x− ~µ)

]

Σ =

σ1,1 σ2,1 . . . σn,1
σ1,2 σ2,2 . . . σn,2

...

σ1,n σ2,n . . . σn,n

 . . . the covariance matrix:
σi,j = (xi − µi)(xj − µj)
σi,i = σ2i

� Normal distribution assumption: f (x|s, ~µ,Σ) = N(x, ~µs,Σs) for each class s.

� Quadratic discriminant function gs(x) = ~xtAs~x+~btsx+cs where

As = −1
2Σ
−1
s

~bs = Σ−1s µs cs = −1
2µ

t
sΣ
−1
s µs − 1

2 ln det(Σs) + lnP (s)

� Special Case:∀s Σs = Σ: Linear discriminant function gs(x) = ~btsx + cs where

~bs = Σ−1s µs cs = −1
2µ

t
sΣ
−1
s µs + lnP (s)

Linear vs. Quadratic Discrimination

� Left: linear discrimination in <2. Points where gs(~x) is maximal for a given s form convex

regions with piece-wise linear boundaries.

� Right: quadratic discrimination in <2. Points where gs(~x) is maximal for a given s form regions

with piece-wise quadratic boundaries.

Learning: Maximum Likelihood Approach

� Assuming f (~x|s) normal: how does it help learning? Instead of estimating the unknown

density function f , we only estimate parameters of the normal distribution f (~x|s, ~µ,Σ)

� That is, estimate ~µs and Σs for each class s.

� Maximum likelihood: given a sample ~x1, ~x2, . . . ~xm of class s, find

(~̂µs, Σ̂s) = arg max
~µ,Σ

f (~x1, ~x2, . . . |s, ~µ,Σ)

= arg max
~µ,Σ

m∏
i=1

f (~xi|s, ~µ,Σ) = arg max
~µ,Σ

m∑
i=1

ln f (~xi|s, ~µ,Σ)

i.e. maximize the likelihood of generating this sample from class s under parameters ~µ,Σ.

� Homework: verify that the solution is, as one would expect:

~̂µs =
1

m

m∑
i=1

~xi Σ̂s =
1

m

m∑
i=1

(~xi − ~̂µs)(~xi − ~̂µs)t

� That is: just calculate the sample mean and the average of m matrices (~xi− ~̂µs)(~xi− ~̂µs)t.

� Do this for all classes s.

Linear Classifier: Direct Learning

� Assume a binary classification problem, i.e. S = {s1, s2}.

� One discriminant function g(~x) enough: classify y =

{
s1, if g(~x) > 0;

s2, otherwise.

� Under the normal distribution assumption, if Σs1 = Σs2, g(~x) is linear, i.e. g(~x) = ~bt~x + c.

� Instead of estimating ~µ,Σs and subsequent calculation of ~b and c, we may estimate ~b, c

directly from the given sample D = {(~x1, y1), (~x2, y2) . . . (~xm, ym)}.

� We want
(
~bt~xi + c

)
> 0 if yi = s1 and

(
~bt~xi + c

)
< 0 otherwise.

� Same as requesting
(
~bt~zi + c

)
> 0 for all zi, where zi = xi if yi = s1 and zi = −xi otherwise.

� Let formally zn+1
i = 1 ∀i and ~w = [~b, c] (add c as the last component of ~w).

� Thus we can write simply g(~z) = ~wt~z and request ~wt~zi > 0 for all zi .

� Let

E(~w) =
∑
~zi∈M

−~wt~zi

where M is the set ~zi that are misclassified.

Perceptron

� E(~b, c) is always non-negative.

� If E(~w) = 0 then all examples in D are correctly classified and D is linearly separable. We

want to find the minimum of E(~w).

� E(~w) is piece-wise linear. A gradient algorithm can be used to search a minimum.

� Gradient algorithm: go towards a minimum by making discrete steps in <n+1 in the direction

opposite to the gradient of E(~w).

∇(E(~w)) =

(
∂E(~w)

∂w1
,
∂E(~w)

∂w2
, . . .

∂E(~w)

∂wn+1

)
=
∑
zi∈M

−~z

� The perceptron gradient algorithm:

1. k = 0. Choose a random ~w.

2. k ← k + 1

3. ~w ← ~w + η(k)
∑

zi∈Mk
~z

4. if |ν(k)
∑

zi∈Mk
~z| > θ go to 2

5. return ~w

� η - the learning rate, θ - an error threshold.

Perceptron: Linear separation

� Perceptrons used in the general tasks of linear discrimi-

nation, not constrained to the normal distribution as-

sumption.

� If the two classes are linearly separable, the perceptron

algorithm will terminate in a finite number of steps with

zero training error.

� A problem that is linearly non-separable in <n may

be separable after being transformed to <n′ n′ > n.

For example, new coordinates may contain all quadratic

terms:

[x(1), . . . x(n), x2(1), x(1)x(2), x(1)x(3), . . . x2(n)]

� This is called basis expansion. A linear separation in

the expanded space corresponds to a non-linear (here

quadratic) separation in the original space <n.

� A linear separation method such as the perceptron may

be applied in the extended space, generating nonlinear

separation in the original space.

A perceptron scheme

A linearly non-separable

problem

A Feedforward Network

� Besides basis expansion, nonlinear separation

may also be achieved directly through a more

complex, network architecture; p hidden units

construct new ‘features’.

� Here, each full line corresponds to a multiplication coefficient. Denoting the threshold function

Θ and assuming that ~x contains the constant 1 as the last component, this network implements

a function of the form

t(~x) = Θ(~vt · [Θ(~wt
1 · ~x), . . .Θ(~wt

p · ~x)]

� We would like to minimize the error on training data D (where yi ∈ {−1, 1}), e.g.

E(~v, ~w1, . . . ~wp) =
∑

(~xi,yi)∈D

(t(~xi)− yi)2

� Due to the thresholds Θ, t is non-differentiable, its gradient not

defined and a gradient approach cannot be applied. This can be

cured by replacing Θ with a similar, but differentiable function.

� The resulting network is also known as the multi-layer feedforward artificial neural network.

A gradient algorithm, called the backpropagation algorithm is available for minimizing E.

Decision trees

� For many purposes, a classification model is required that a human can directly understand

and interpret.

� Decision trees are examples of such interpre-

table models.

� Denote x(i) the i-th component of the example’s attribute tuple. for attributes with finite

domain (typically nominal attributes), non-leaf vertices correspond to attribute tests in the

form

x(i) = value

For attributes with real domain, they may be in the form

x(i) ≥ value, or x(i) ≤ value

� Leaves contain predicted classes.

� The predicted class is conditioned by the tests on the path from the root to the leaf.

Decision tree discrimination boundary

� Decision tree classification boundaries in <n are given by axis-parallel hyperplanes.

� Example in <2 for binary classification:

Example-weather data

� 9 pozitive YES and 5 negative NO cases

Decision tree construction

� A ‘divide-and-conquer’ strategy is used for decision tree building from examples.

� Let’s define information meassure

� info([2, 3]) = 0.971,info([4, 0]) = 0.0, info([3, 2]) = 0.971

� info([2, 3], [4, 0], [3, 2]) = (5
14)0.971 + (4

14)0 + (5
14)0.971 = 0.693.

Decision tree construction

� Let’s define information gain

� at root: info([9, 5]) = 0.94

� Information gain gain(outlook) = info([9, 5])− info([2, 3], [4, 0], [3, 2]) = 0.940− 0.693 =

0.247 bits,

� gain(temperature) = 0.029 bits,gain(humidity) = 0.152 bits,gain(windy) = 0.048 bits

� Select attribute outlook!

Choosing a split attribute

� Entropy of sample D with distribution p1, p2, . . . pγ among γ classes:

H(D) =

γ∑
i=1

−pi log2 pi

pi . . . relative frequencies

� Minimum H(D) = 0, if all examples in the same class.

� Maximum H(D) = log2 γ, if the distribution is uniform.

� Selection heuristic: reduction in entropy after adding a split on attribute xi

G(D, i) = H(D)−
∑

vj∈Domain(x(i))

|Ej|
|E|

H(Ej)

� Sum of entropies in the offsprings weighted by relative sizes of their examples subsets.

Clustering

� No training data

� Natural clusters

� (a) k-means, (b) fuzzy clustering (c) probability using probability mixture , (d) hierarchical

clustering (dendogram)

K-means

1. beginInicialize k, µ1, µ2, . . . , µk

2. do classify sample according to nearest

µi

3. update µi

4. until no change µi

5. return µ1, µ2, . . . , µk

6. end

Hierarchical clustering

� agglomerative: bottom-up → merging

� divisive: top-down → splitting

1. begin Initializek, k̂ ← n,Di ← {Xi}, i = 1, . . . , n

2. do k̂ = k̂ − 1

3. find nearest clusters. Di a Dj
4. until k = k̂

5. return k clusters

6. end

� dmin(x, x
′
) = min ‖x− x′‖, x ∈ Di, x

′ ∈ Di

Hierarchical clustering - example

