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Last lecture’s wrap-up

—

= Bayes classification: classify into arg maxg P(s|7)
s The Bayes classifier has the smallest risk (classification error) among all classifiers.
s Bayes classification rests upon knowing the true distribution P(s|¥).

s Usually we are not given P(s|Z) or P(Z,s), only a i.i.d random sample therefrom. Without
any prior knowledge on P (', s), it gets very hard to estimate it from the sample as the number
of components in T grows.

= [he computational curse would not manifest itself if components of & were statistically inde-
pendent, but that is rarely the case.

= A more realistic assumption, also avoiding the computational curse, is that the form of dis-
tribution P(Z|s) is known and only its parameters should be estimated from the training
sample.



Distributional Assumption

= [he normal density
1 —(x — p)?
exp

N =
(xJ /,L, 0-) o 27'(' 20_2

= Notable properties:

Central limit theorem: The effect of a sum of a large number of small independent random
disturbances (however distributed) leads to the normal distribution.

Of all densities f(x) of a random variable X with given mean and variance, the normal
density has the greatest entropy H(X) = [~ f(x)log, f(z)dx.

= Given a single real scalar attribute, the normal distribution assumption proposes that for
each class s, the conditional density of z is:

f(%’S) — N(x,,us,as)

s Often, distributional parameters are explicitly shown in the conditional part:

f(x|s,,us, US) = N($>N5708>



Classifying under normal attribute distribution

m Under the normal distribution assumption, for Bayes optimal classification we proceed as
follows

f(x‘salustS)P(S)
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m A quadratic discriminant function thus defined for each s € S,

gs(x) = a,x® + byx + ¢4

Using discriminant functions: for a given x, classify into max; g(x).



Normal distribution, same std. deviation o (same variance ¢?)

= Simple case: same std. deviations. Example: s = {male, female}, x = height.

same std. deviation

J IRV E)U,,MALE

m Since Vs o, = o, further simplification is possible

2
1
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where b, = 5 and ¢, = —% + In P(s).

m Here, the discriminant function is linear:

gs(x) = bsx + ¢4



The multivariate case

= The multivariate case (£ now a n-component real vector, & € R")

1 1

Nz, ji,X) = exp | —=(Z — @)'|2|(Z — [
(, i, ) NEET] S(@ = A)|[E[(& ~ A)
011 021 ... Opl
¥ | 712 022 e On2 . the covariance matrix: CA (3232 i)l = i)
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O'Ln 0-2,71 . O?’L,’I’L

= Normal distribution assumption: f(z|s, i, %) = N(x, jis, X) for each class s.

m Special Case:Vs X, = X: Linear discriminant function

where

b, = )Py cs = =l g + In P(s)



Linear vs. Quadratic Discrimination
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u Left: linear discrimination in 3?. Points where g,(Z) is maximal for a given s form convex

regions with piece-wise linear boundaries.

= Right: quadratic discrimination in 2. Points where g,(Z) is maximal for a given s form regions

with piece-wise quadratic boundaries.



Learning: Maximum Likelihood Approach

s Assuming f(Z|s) normal: how does it help learning? Instead of estimating the unknown
density function f, we only estimate parameters of the normal distribution f (s, (i, 3)

= [hat is, estimate [iy and X for each class s.

s Maximum likelihood: given a sample 71, 75, ... T, of class s, find

(ﬁs; ﬁ:s) — argm%xf(fh 3_7)27 s ‘87 E? 2)

i,

m m
- Zi|s, i, 3) = In f(Z,]s, i, &
arg%azng(les,u, ) argrﬂl;l’ag; n f(Zils, @, %)

i.e. maximize the likelihood of generating this sample from class s under parameters /i, 3.

s Homework: verify that the solution is, as one would expect:
, 1 . 1 <&
Hs meE@ 3= EZ(% — [is)(T; — fis)
i=1 ;
1=1

= That is: just calculate the sample mean and the average of m matrices (7; — ji,)(Z; — fis

m Do this for all classes s.



Linear Classifier: Direct Learning

= Assume a binary classification problem, i.e. S = {s1, 2}

s1, if g(Z) > 0;

= One discriminant function g(Z) enough: classify y = { sy, otherwise.

s Under the normal distribution assumption, if ¥, = ¥, ¢(Z) is linear, i.e. g(¥) = b7+ c.

m Instead of estimating /i, 23; and subsequent calculation of b and c, we may estimate b, c
directly from the given sample D = {(Z1, y1), (T2, y2) - - - (T, Ym) }-

s We want (l;tf@ + c) > 0 if y; = 51 and (Etfl + c) < 0 otherwise.
= Same as requesting (gtz_; + c) > () for all z;, where z; = z; if y; = s1 and z; = —x; otherwise.

= Let formally 2"*! =1 Vi and @ = [b, ] (add ¢ as the last component of ).
s Thus we can write simply g(Z) = w'Z and request w'z; > 0 for all z; .

m Let
E(w) =Y —u'z
zeM
where M is the set z; that are misclassified.



Perceptron

= E(b, c) is always non-negative.

n If E(w) = 0 then all examples in D are correctly classified and D is linearly separable. We
want to find the minimum of ().

m FE(w) is piece-wise linear. A gradient algorithm can be used to search a minimum.

= Gradient algorithm: go towards a minimum by making discrete steps in 38" ! in the direction
opposite to the gradient of E(w).

— <aE(w> OB (i) aE<w)) oy

8’(1}1 7 ng T 8wn+1

zeM

= [he perceptron gradient algorithm:

1. k = 0. Choose a random .
2.k« k+1

3. W =W +n(k) Y, cnr, 7

4. if lv(k) D . e 7] > 0 go to

5. return W

= 7] - the learning rate, 0 - an error threshold.



Perceptron: Linear separation

m Perceptrons used in the general tasks of linear discrimi-
nation, not constrained to the normal distribution as-
sumption.

m If the two classes are linearly separable, the perceptron
algorithm will terminate in a finite number of steps with
zero training error.

m A problem that is linearly non-separable in " may
be separable after being transformed to R n’ > n.
For example, new coordinates may contain all quadratic
terms:

[2(1),...z(n), 2°(1), z(Dx(2), z(1)x(3), ... 2%(n)]

m This is called basis expansion. A linear separation in
the expanded space corresponds to a non-linear (here

quadratic) separation in the original space R".

m A linear separation method such as the perceptron may

A linearly non-separable

be applied in the extended space, generating nonlinear oroblem

separation in the original space.



A Feedforward Network

m Besides basis expansion, nonlinear separation
may also be achieved directly through a more
complex, network architecture; p hidden units

construct new ‘features’.

m Here, each full line corresponds to a multiplication coefficient. Denoting the threshold function
O and assuming that T contains the constant 1 as the last component, this network implements

a function of the form

—t —

t(Z) =6 - O] - T),...0(d, - )]
s We would like to minimize the error on training data D (where y; € {—1,1}), e.g.

E(0,dh,... %) = Y () —y)’

(Tiyi)€D
m Due to the thresholds ©, ¢ is non-differentiable, its gradient not
defined and a gradient approach cannot be applied. This can be @ > @

cured by replacing © with a similar, but differentiable function.

= The resulting network is also known as the multi-layer feedforward artificial neural network.
A gradient algorithm, called the backpropagation algorithm is available for minimizing E.



Decision trees

s For many purposes, a classification model is required that a human can directly understand
and interpret.

temperature

f‘e?%cr%%rmal
hypochondria

= Decision trees are examples of such interpre- muscle pain common cold

table models. /\

flue common cold

s Denote x(i) the i-th component of the example's attribute tuple. for attributes with finite
domain (typically nominal attributes), non-leaf vertices correspond to attribute tests in the
form

x(i) = value
For attributes with real domain, they may be in the form

x(i) > value, or x(i) < value

m Leaves contain predicted classes.

m [he predicted class is conditioned by the tests on the path from the root to the leaf.



Decision tree discrimination boundary

m Decision tree classification boundaries in " are given by axis-parallel hyperplanes.

s Example in i*? for binary classification:
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Example-weather data

m 9 pozitive YES and 5 negative NO cases

Table 1.2 The weather data.

Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high frue yes
overcast hot normal false yes
rainy mild high true no




Decision tree construction

A ‘divide-and-conquer’ strategy is used for decision tree building from examples.

m Let’s define information meassure
info([2,3]) = 0.971info([4,0]) = 0.0, info([3,2]) = 0.971
info([2,3],[4,0],[3,2]) = (2)0.971 + (£)0 + (£)0.971 = 0.693.

14
(e
sunny rainy hot mild cool
overcast
yes yes yes yes yes yes
yes yes yes yes yes yes
no yes yes no yes yes
no yes no no yes no
no no no
@ (b) no
high! !normal false! !‘Lrue
yes yes yes yes
yes yes yes yes
yes yes yes yes
no yes yes no
no yes yes no
no yes yes no
no no no
(0 LY

(dy



Decision tree construction

m Let's define information gain
= at root: info([9,5]) = 0.94

= Information gain gain(outlook) = info(|9,5]) —info([2, 3], [4,0],[3,2]) = 0.940 — 0.693 =
0.247 bits,

» gain(temperature) = 0.029 bits,gain(humidity) = 0.152 bits,gain(windy) = 0.048 bits

m Select attribute outlook!

no yes yes no




Choosing a split attribute

= Entropy of sample D with distribution py, ps, ... p, among y classes:

N

H(D) =Y —pilogyp;

i=1
p; ... relative frequencies
s Minimum H(D) = 0, if all examples in the same class.
s Maximum H (D) = log, 7, if the distribution is uniform.

m Selection heuristic: reduction in entropy after adding a split on attribute z;

)]

G(D,i)=H(D) - ) H(E;))

. 1B
(i)

vj€Domain(x (i

= Sum of entropies in the offsprings weighted by relative sizes of their examples subsets.



Clustering

= No training data
s Natural clusters

= (a) k-means, (b) fuzzy clustering (c) probability using probability mixture , (d) hierarchical
clustering (dendogram)
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K-means

1. beginlnicialize k, 1, po, . - ., fig

2. do classify sample according to nearest
i
. update

3

4. until no change ;
5. return pq, po, ..., Uk
6

. end

[
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Hierarchical clustering

= agglomerative: bottom-up — merging

m divisive: top-down — splitting

1. begin Initializek, k < n, D; < {X;},i=1,....n
dok=Fk—1

find nearest clusters. D; a D;

A

until & =k

return k clusters

A

end

O dmm(sc,x/) = min ||z — SC/H v €D, 2 €D,



Hierarchical clustering - example

Level | — d 100

Level 2 _, L L_T 90
Level 3 — S0 o
2
Level 4 — 70 3
Level 5 — 60l =
<
Level 6 — 201 -2
Level 7 — 40 -g
Level 8 — 30 §
20 7

10

0




