Cybernetics and Artificial Intelligence

1. Probabilistic Decision Making and Classification

Gerstner laboratory Dept. of Cybernetics Czech Technical University in Prague

Daniel Novák Thanks to: Filip Železný

Literature, demos

- Duda, Hart, Stork: Pattern Classification http://www.crc.ricoh.com/~stork/DHS.html
- Ch. Bishop, Pattern Recognition and Machine Learning http://research.microsoft. com/en-us/um/people/cmbishop/prml/
- Kotek, Vysoký, Zdráhal: Kybernetika 1990
- Classification toolbox

http://stuff.mit.edu/afs/sipb.mit.edu/user/arolfe/matlab/

Statistical Pattern Recognition Toolbox http://cmp.felk.cvut.cz/cmp/software/stprtool/

Motivation example I [Duda, Hart, Stork: Pattern Classification]

- Factory for fish processing
- \bullet 2 classes Detection of salmon and sea bass based on a camera
 - Features we measure width, length, etc.
- the TASK is: FISH CLASSIFICATION

Motivation example II

- We estimate the feature distribution using histograms
- Wrong classification due to histograms overlapping
- Improvement-feature combination

- Linnear, quadratic, k-nearest classifier
- Over-fitting, Generalization, error minimalization

We know probability distribution

- Yes Bayes classification
- Apriori distribution $p(s_j)$ and conditional probability $p(x|s_j)$

• Thus
$$p(s_j, x) = p(x|s_j)p(s_j) = p(s_j|x)p(x)$$

Bayes theorem

$$p(s_j|x) = \frac{p(x|s_j)p(s_j)}{p(x)}$$

 $posterior \propto likelihood \times prior$

► X

• Classification $\arg \max_j p(s_j|x)$

•
$$p(x|s_1) = \frac{1}{3}, p(x|s_1) = \frac{2}{3}$$
, (in images below $s_i = \omega_i$)

Error minimization - maximum aposterior probability (MAP)[Bishop]

- Illustrative example
- $p(s_1, x) = p(x|s_1)p(s_1)$, $p(s_2, x) = p(x|s_2)p(s_2)$, see image below ($s_i = C_i$)
- Classification error: $p(error) = p(x \in R_1, C_2) + p(x \in R_2, C_1)$
- Error $p(x \in R_1, C_2)$ Redá and green area objects are classified as C_2 instead of C_1
- Error $p(x \in R_2, C_1)$ blue area objects are classified as C_1 instead of C_2
- Classification error minimization both probabilities are overlapping in x_0 (red area will disappear)

Historical note - Thomas Bayes

- Thomas Bayes published in 1736 study An Introduction to the Doctrine of Fluxions, and a Defence of the Mathematicians Against the Objections of the Author of the Analyst
- Example: solution of white and black bowls using Bayes equation

Probability distribution is unknown

- Training and test data
- There are thousand classifiers e.g. decision trees

Decision making under uncertainty

- An important feature of intelligent systems
 - make the best possible decision
 - in **uncertain** conditions.
- **Example**: Take a tram OR subway from A to B?
 - Tram: timetables imply a quicker route, but adherence uncertain.
 - Subway: longer route, but adherence almost certain.
- **Example**: where to route a letter with this ZIP?

- 15700? 15706? 15200? 15206?
- What is the **optimal decision**?
- Both examples fall into the same framework.

- Wife coming back from work. Husband pondering what to cook for dinner.
- 3 dishes *decisions* in his repertoir:
 - nothing ... don't bother cooking \Rightarrow no work but makes wife upset
 - *pizza* ... **microwave a frozen pizza** \Rightarrow not much work but won't impress
 - $-g.T.c.\dots$ general Tso's chicken \Rightarrow will make her day, but very laborious.
- Husband quantifies the degree of hassle incurred by the individual options. This depends on how wife is feeling on her way home. Her state of mind is an *wuncertain state*. Let us distinguish her mood:
 - good ... wife is feeling **good**.
 - average ... wife average mooded.
 - *bad* . . . wife **bad** mooded.
- For each of the 9 possible situation (3 possible decisions \times 3 possible states) the hassle is quantified by a \checkmark loss function l(d, s):

l(s,d)	d = nothing	d = pizza	d = g.T.c.
s = good	0	2	4
s = average	5	3	5
s = bad	10	9	6

Example (cont'd)

- Husband tries to estimate wife's state of mind through an experiment. He tells her he accidentally overtaped their wedding video and observes her reaction
- Anticipates 4 possible reactions:
 - mild . . . all right, we keep our memories.
 - *irritated* . . . how many times do I have to tell you....
 - *upset* ... Why did I marry this guy?
 - alarming . . . silence
- The reaction is a measurable *reaction attribute* (of the state of mind).
- From experience, husband knows how individual reactions are probable in each state of mind; this is captured by conditional distribution P(x|s).

P(x s)	x =	x =	x =	x =
	mild	irritated	upset	alarming
s = good	0.5	0.4	0.1	0
s = average	0.2	0.5	0.2	0.1
s = bad	0	0.2	0.5	0.3

Decision strategy

- **Decision strategy**: a rule selecting a decision for any given value of the measured attribute(s).
- i.e. function $d = \delta(x)$.
- Example of husband's possible strategies:

$\delta(x)$	x = mild	x = irritated	x = upset	x = alarming
$\delta_1(x) =$	nothing	nothing	pizza	g.T.c.
$\delta_2(x) =$	nothing	pizza	g.T.c.	g.T.c.
$\delta_3(x) =$	g.T.c.	g.T.c.	g.T.c.	g.T.c.
$\delta_4(x) =$	nothing	nothing	nothing	nothing

- Overall, $3^4 = 81$ possible strategies (3 possible decisions for each of the 4 possible attribute values).
- How to define which strategy is best? How to sort them by quality?
- Define the \rightarrow risk of a strategy for state s: mean loss value conditioned on s.

$$R(\delta,s) = \sum_x l(s,\delta(x)) P(x|s)$$

MiniMax

- **Example:** risk of strategy δ_1 at state s = good is
 - $$\begin{split} R(\delta_1, \textit{good}) &= l(\textit{good}, \delta_1(\textit{mild})) \cdot P(\textit{mild}|\textit{good}) + l(\textit{good}, \delta_1(\textit{irritated})) \cdot P(\textit{irritated}|\textit{good}) \\ &+ l(\textit{good}, \delta_1(\textit{upset})) \cdot P(\textit{upset}|\textit{good}) + l(\textit{good}, \delta_1(\textit{alarming})) \cdot P(\textit{alarming}|\textit{good}) \end{split}$$

$$= l(\textit{good},\textit{nothing}) \cdot 0.5 + l(\textit{good},\textit{nothing}) \cdot 0.4 + l(\textit{good},\textit{pizza}) \cdot 0.1 + l(\textit{good},\textit{g.T.c.}) \cdot 0$$

$$= 0 \cdot 0.5 + 0 \cdot 0.4 + 2 \cdot 0.1 + 4 \cdot 0 = 0.2$$

- Similarly: $R(\delta_1, average) = 4.4$ a $R(\delta_1, good) = 8.3$
- Maximum risk of strategy δ_1 (over all possible states) is thus 8.3.
- Similarly: maximum risk of strategy δ_3 is 6.
- MiniMax criterion: out of two strategies, whichever has a smaller maximum risk is superior.
- Thus δ_3 is better than δ_1 by MiniMax.
- The best strategy δ^* by Minimax is one that **minimizes the maximum risk**:

$$\delta^* = \arg\min_{\delta}\max_{s} R(\delta,s)$$

Bayesian decision making

• What if husband knows that wife *usually is feeling fine*? More generally: he knows how probable her state of minds are, i.e. he knows the distribution P(s). For example:

$$s = good$$
 $s = average$ $s = bad$ $P(s) =$ 0.70.20.1

- Note that these probabilities do not influence MiniMax-based decisions.
- Given P(s) we can calculate the \checkmark mean risk of a strategy over all possible states:

$$r(\delta) = \sum_s R(\delta,s) P(s)$$

For example.

$$r(\delta_1) = 0.2 \cdot 0.7 + 4.4 \cdot 0.2 + 8.3 \cdot 0.1 = 1.85$$
$$r(\delta_3) = 4 \cdot 0.7 + 5 \cdot 0.2 + 6 \cdot 0.1 = 4.4$$

- **Bayes criterion**: out of two strategies choose the one with smaller mean risk. From the Bayesian viewpoint δ_1 is superior to δ_3 .
- In this case, contrary to MiniMax!

Bayes optimal strategy

The *A* Bayes optimal strategy: one minimizing mean risk. That is

$$\delta^* = \arg\min_{\delta} r(\delta)$$

From P(x|s)P(s) = P(s|x)P(x) (Bayes rule), we have

$$r(\delta) = \sum_{s} R(\delta, s)P(s) = \sum_{s} \sum_{x} l(s, \delta(x))P(x|s)P(s)$$
$$= \sum_{s} \sum_{x} l(\delta(x), s)P(s|x)P(x) = \sum_{x} P(x) \sum_{s} l(s, \delta(x))P(s|x)$$

• The optimal strategy is obtained by minimizing the conditional risk separately for each x:

$$\delta^*(x) = \arg\min_d \sum_s l(s,d) P(s|x)$$

Unlike for MiniMax, there is no need to evaluate the risk of all possible strategies. The Bayes
optimal strategy can be calculated point-wise by determining the optimal decision for individual
attribute values x.

Statistical decision making: wrapping up

Given:

- A set of possible states: ${\cal S}$
- A set of possible decisions: ${\cal D}$
- A loss function $l : \mathcal{D} \times \mathcal{S} \to \Re$
- The range ${\mathcal X}$ of the **attribute**
- Distribution P(x|s), $x \in \mathcal{X}, s \in \mathcal{S}$.

Define:

- **Strategy**: function $\delta : \mathcal{X} \to \mathcal{D}$
- Risk of strategy δ at state $s \in S$: $R(\delta, s) = \sum_x l(s, \delta(x)) P(x|s)$

MiniMaxov problem:

- Further given: admissible strategy set $\Delta.$
- Goal: find the optimal strategy $\delta^* = \arg \min_{\delta \in \Delta} \max_{s \in \mathcal{S}} R(\delta, s)$

Bayes problem:

- Further given: distribution P(s), $s \in \mathcal{S}$.
- Further define: mean risk of strategy δ : $r(\delta) = \sum_{s} R(\delta, s) P(s)$
- Goal: find the optimal strategy $\delta^* = \arg\min_{\delta \in \Delta} r(\delta)$
- Solution: $\delta^*(x) = \arg \min_d \sum_s l(s, d) P(s|x)$

Pattern recognition

• Example task:

What digit is this?

- Attribute-based recognition of digits: classification into on of classes 0...9 by the attribute vector.
- A special case of statistical decision theory:
 - Attribute vector $ec{x} = (x_1, x_2, \dots)$: pixels # 1, 2, \dots
 - State set S = decision set $D = \{0, 1, \dots 9\}$.
 - State = actual class, Decision = recognized class.
 - Loss function:

$$l(s,d) = \left\{ \begin{array}{ll} 0, \ d=s \\ 1, \ d\neq s \end{array} \right.$$

• Mean risk = mean classification error.

Bayes classification

- Optimal classification of \vec{x} :

$$\delta^*(\vec{x}) = \arg\min_d \sum_s \underbrace{l(s,d)}_{0 \text{ if } d=s} P(s|\vec{x}) = \arg\min_s [1 - P(s|\vec{x})] = \arg\max_s P(s|\vec{x})$$

- We thus choose the most probable class for a given attribute vector.
- Usually we are not given $P(s|\vec{x})$ but only a finite (multi)set of
- Training examples $(\vec{x}_1, s_1), (\vec{x}_2, s_2), \dots (\vec{x}_l, s_l)$ drawn i.i.d from $P(\vec{x}, s)$.
- $\hfill\blacksquare$ We might want to estimate $P(s|\vec{x})$

$$P(s|\vec{x}) \approx \frac{\# \text{ examples where } \vec{x}_i = \vec{x} \text{ and } s_i = s}{\# \text{ examples where } \vec{x}_i = \vec{x}}$$

- This is usually impossible:
 - -X may be uncountable (\vec{x} continuous). OK, discretization possible.
 - To estimate $P(s|\vec{x})$ with a fixed accuracy, we need $O(\exp(n))$ examples $(n \dots$ width of $\vec{x})$.
 - Combinatorial curse.
 - Bayes classification provides a lower bound on classification error, but that is usually not achievable because $P(s|\vec{x})$ is not known.

Naive Bayes classification

- For efficient classification we must thus rely on additional assumptions. A basic example:
- In the exceptional case of statistical independence between x(i) components for each class s it holds

$$P(\vec{x}|s) = P(x(1)|s) \cdot P(x(2)|s) \cdot \dots$$

Use simple Bayes law and maximize:

$$P(s|\vec{x}) = \frac{P(\vec{x}|s)P(s)}{P(\vec{x})} = \frac{P(s)}{P(\vec{x})}P(x(1)|s) \cdot P(x(2)|s) \cdot \ldots =$$

- No combinatorial curse in estimating P(s) and P(x(i)|s) separately for each i and s.
- No need to estimate $P(\vec{x})$. (Why?)
- N.B. P(s) may be provided apriori.
- Naive = when used despite statistical dependence btw. x(i)'s.

Neighbor-based classification

- Assumption: similar objects fall in the same class.
- *Similarity* small *distance* in *X*.
- A fuction, called a **metric**: $\rho: X \times X \to \Re$ such that $\forall x, y, z$
 - $\begin{aligned} &-\rho(x,y) \geq 0 \\ &-\rho(x,x) = 0 \\ &-\rho(x,y) = \rho(y,x) \\ &-\rho(x,z) \leq \rho(x,y) + \rho(y,z) \end{aligned}$
- Examples:
 - **Euclidean metric** for $X = \Re^n$:

$$\rho_E(\vec{x}_1, \vec{x}_2) = \sqrt{\sum_i (x_1(i) - x_2(i))^2}$$

- For $X = \{0, 1\}^n$, ρ_E^2 is equal to the **Hamming metric**, giving the number of non-equal corresponding components.

k-NN

■ *▶ k*-nearest neighbor classification, *k*-NN.

Given:

- $-k \in N$
- Training examples: $(\vec{x}_1, s_1), (\vec{x}_2, s_2), \dots (\vec{x}_l, s_l)$
- Metric $\rho: X \times X \to \Re$
- Goal: classify \vec{x}_{l+1}
- Approach: choose k nearest (to \vec{x} by ρ) examples. Let the majority class therein be the class for \vec{x}_{l+1} .

Classification flexibility

- How to choose k?
- A general trend: Consider a two-class problem (red/green) with noisy training examples (some s_i misclassified).

k = 1: Good fit of training data, small tolerance to noise.

Bayes classifier: less flexible than 1-nn, more flexible than 15-nn.

k = 15: Poor fit to training data. Small sensitivity to no-ise.

- Note: the shown Bayes classifier was constructed from **known** $P(s|\vec{x})$.
- Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very different from the optimal B/C.
- Optimal k somewhere in the middle. Still pending: how to determine the best value?

Validation

- Mean risk $r(\delta)$ of classifier δ corresponds to the relative frequency of its misclassifications (convergence in the limit...), or 'error rate'.
- Define training error $TE(\delta)$ as the error rate on v training data.
- Is $TE(\delta)$ a good estimate of $r(\delta)$?
- Earlier: 1-nn is not a good classifier, despite having training error 0.
- $\rightarrow TE(\delta)$ is (usually) not a good estimate of $r(\delta)$ because it is biased. To estimate $r(\delta)$ in an unbiased way:
 - split available data into a **training set** $(\vec{x}_1, s_1), \dots (\vec{x}_l, s_l)$ and an independent **testing set** $(\vec{x}_{l+1}, s_{l+1}), \dots (\vec{x}_{l+m}, s_{l+m})$
 - (e.g. by a 75% 25% split).
 - Construct (train) classifier on the training set.
- Error rate on the testing set is an **unbiased** estimate of $r(\delta)$.
- Unbiased does not mean accurate.