
Cybernetics and Artificial Intelligence

1. Probabilistic Decision Making and Classification

laboratory

Gerstner

Gerstner laboratory
Dept. of Cybernetics

Czech Technical University in Prague

Daniel Novák
Thanks to: Filip Železný



Literature, demos

� Duda, Hart, Stork: Pattern Classification http://www.crc.ricoh.com/~stork/DHS.html

� Ch. Bishop, Pattern Recognition and Machine Learning http://research.microsoft.

com/en-us/um/people/cmbishop/prml/

� Kotek, Vysoký, Zdráhal: Kybernetika 1990

� Classification toolbox

http://stuff.mit.edu/afs/sipb.mit.edu/user/arolfe/matlab/

� Statistical Pattern Recognition Toolbox

http://cmp.felk.cvut.cz/cmp/software/stprtool/

http://www.crc.ricoh.com/~stork/DHS.html
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://stuff.mit.edu/afs/sipb.mit.edu/user/arolfe/matlab/
http://cmp.felk.cvut.cz/cmp/software/stprtool/


Motivation example I [Duda, Hart, Stork: Pattern Classification]

� Factory for fish processing

� − 2 classes - Detection of salmon and sea bass based on a camera

− Features - we measure width,length, etc.

� the TASK is: FISH CLASSIFICATION

———————————————————————————————-



Motivation example II

� We estimate the feature distribution using histograms

� Wrong classification due to histograms overlapping

� Improvement-feature combination

� Linnear, quadratic, k-nearest classifier

� Over-fitting, Generalization, error minimalization



We know probability distribution

� Yes - Bayes classification

� Apriori distribution p(sj) and conditional probability p(x|sj)
� Thus p(sj, x) = p(x|sj)p(sj) = p(sj|x)p(x)

� Bayes theorem

p(sj|x) =
p(x|sj)p(sj)

p(x)

posterior ∝ likelihood× prior

� Classification arg maxj p(sj|x)

� p(x|s1) = 1
3, p(x|s1) = 2

3, (in images below si = ωi)



Error minimization - maximum aposterior probability (MAP)[Bishop]

� Illustrative example

� p(s1, x) = p(x|s1)p(s1),p(s2, x) = p(x|s2)p(s2), see image below (si = Ci)

� Classification error: p(error) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

� Error p(x ∈ R1, C2) - Redá and green area - objects are classified as C2 instead of C1

� Error p(x ∈ R2, C1) - blue area - objects are classified as C1 instead of C2

� Classification error minimization - both probabilities are overlapping in x0 (red area will disap-

pear)



Historical note - Thomas Bayes

� Thomas Bayes - published in 1736 study An Introduction to the Doctrine of Fluxions, and a

Defence of the Mathematicians Against the Objections of the Author of the Analyst

� Example: solution of white and black bowls using Bayes equation



Probability distribution is unknown

� Training and test data

� There are thousand classifiers - e.g. decision trees



Decision making under uncertainty

� An important feature of intelligent systems

− make the best possible decision

− in uncertain conditions.

� Example: Take a tram OR subway from A to B?

− Tram: timetables imply a quicker route, but adherence uncertain.

− Subway: longer route, but adherence almost certain.

� Example: where to route a letter with this ZIP?

− 15700? 15706? 15200? 15206?

� What is the optimal decision?

� Both examples fall into the same framework.



Example [Kotek, Vysoký, Zdráhal: Kybernetika 1990]

� Wife coming back from work. Husband pondering what to cook for dinner.

� 3 dishes decisions in his repertoir:

− nothing . . . don’t bother cooking ⇒ no work but makes wife upset

− pizza . . . microwave a frozen pizza ⇒ not much work but won’t impress

− g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very laborious.

� Husband quantifies the degree of hassle incurred by the individual options. This depends on

how wife is feeling on her way home. Her state of mind is an uncertain state. Let us

distinguish her mood:

− good . . . wife is feeling good.

− average . . . wife average mooded.

− bad . . . wife bad mooded.

� For each of the 9 possible situation (3 possible decisions × 3 possible states) the hassle is

quantified by a loss function l(d, s):

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4

s = average 5 3 5

s = bad 10 9 6



Example (cont’d)

� Husband tries to estimate wife’s state of mind through an experiment. He tells her he acci-

dentally overtaped their wedding video and observes her reaction

� Anticipates 4 possible reactions:

− mild . . . all right, we keep our memories.

− irritated . . . how many times do I have to tell you....

− upset . . . Why did I marry this guy?

− alarming . . . silence

� The reaction is a measurable attribute (of the state of mind).

� From experience, husband knows how individual reactions are probable in each state of mind;

this is captured by conditional distribution P (x|s).

P (x|s) x = x = x = x =

mild irritated upset alarming

s = good 0.5 0.4 0.1 0

s = average 0.2 0.5 0.2 0.1

s = bad 0 0.2 0.5 0.3



Decision strategy

� Decision strategy: a rule selecting a decision for any given value of the measured attribute(s).

� i.e. function d = δ(x).

� Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.

δ2(x) = nothing pizza g.T.c. g.T.c.

δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

δ4(x) = nothing nothing nothing nothing

� Overall, 34 = 81 possible strategies (3 possible decisions for each of the 4 possible attribute

values).

� How to define which strategy is best? How to sort them by quality?

� Define the risk of a strategy for state s: mean loss value conditioned on s.

R(δ, s) =
∑
x

l(s, δ(x))P (x|s)



MiniMax

� Example: risk of strategy δ1 at state s = good is

R(δ1, good) = l(good, δ1(mild)) · P (mild|good) + l(good, δ1(irritated)) · P (irritated|good)

+l(good, δ1(upset)) · P (upset|good) + l(good, δ1(alarming)) · P (alarming|good)

= l(good, nothing) · 0.5 + l(good, nothing) · 0.4 + l(good, pizza) · 0.1 + l(good, g.T.c.) · 0
= 0 · 0.5 + 0 · 0.4 + 2 · 0.1 + 4 · 0 = 0.2

� Similarly: R(δ1, average) = 4.4 a R(δ1, good) = 8.3

� Maximum risk of strategy δ1 (over all possible states) is thus 8.3.

� Similarly: maximum risk of strategy δ3 is 6.

� MiniMax criterion: out of two strategies, whichever has a smaller maximum risk is

superior.

� Thus δ3 is better than δ1 by MiniMax.

� The best strategy δ∗ by Minimax is one that minimizes the maximum risk:

δ∗ = arg min
δ

max
s
R(δ, s)



Bayesian decision making

� What if husband knows that wife usually is feeling fine? More generally: he knows how probable

her state of minds are, i.e. he knows the distribution P (s). For example:

s = good s = average s = bad

P (s) = 0.7 0.2 0.1

� Note that these probabilities do not influence MiniMax-based decisions.

� Given P (s) we can calculate the mean risk of a strategy over all possible states:

r(δ) =
∑
s

R(δ, s)P (s)

� For example.

r(δ1) = 0.2 · 0.7 + 4.4 · 0.2 + 8.3 · 0.1 = 1.85

r(δ3) = 4 · 0.7 + 5 · 0.2 + 6 · 0.1 = 4.4

� Bayes criterion: out of two strategies choose the one with smaller mean risk. From the

Bayesian viewpoint δ1 is superior to δ3.

� In this case, contrary to MiniMax!



Bayes optimal strategy

� The Bayes optimal strategy: one minimizing mean risk. That is

δ∗ = arg min
δ
r(δ)

� From P (x|s)P (s) = P (s|x)P (x) (Bayes rule), we have

r(δ) =
∑
s

R(δ, s)P (s) =
∑
s

∑
x

l(s, δ(x))P (x|s)P (s)

=
∑
s

∑
x

l(δ(x), s)P (s|x)P (x) =
∑
x

P (x)
∑
s

l(s, δ(x))P (s|x)︸ ︷︷ ︸
Conditional risk

� The optimal strategy is obtained by minimizing the conditional risk separately for each x:

δ∗(x) = arg min
d

∑
s

l(s, d)P (s|x)

� Unlike for MiniMax, there is no need to evaluate the risk of all possible strategies. The Bayes

optimal strategy can be calculated point-wise by determining the optimal decision for individual

attribute values x.



Statistical decision making: wrapping up

� Given:

− A set of possible states: S
− A set of possible decisions: D
− A loss function l : D × S → <
− The range X of the attribute

− Distribution P (x|s), x ∈ X , s ∈ S.

� Define:

− Strategy: function δ : X → D
− Risk of strategy δ at state s ∈ S: R(δ, s) =

∑
x l(s, δ(x))P (x|s)

� MiniMaxov problem:

− Further given: admissible strategy set ∆.

− Goal: find the optimal strategy δ∗ = arg minδ∈∆ maxs∈S R(δ, s)

� Bayes problem:

− Further given: distribution P (s), s ∈ S.

− Further define: mean risk of strategy δ: r(δ) =
∑

sR(δ, s)P (s)

− Goal: find the optimal strategy δ∗ = arg minδ∈∆ r(δ)

− Solution: δ∗(x) = arg mind
∑

s l(s, d)P (s|x)



Pattern recognition

� Example task:

What digit is this?

can formulate as a

statistical decision

task

Attribute = pixel value vector.

� Attribute-based recognition of digits: classification into on of classes 0 . . . 9 by the

attribute vector.

� A special case of statistical decision theory:

− Attribute vector ~x = (x1, x2, . . . ): pixels # 1, 2, . . . .

− State set S = decision set D = {0, 1, . . . 9}.
− State = actual class, Decision = recognized class.

− Loss function:

l(s, d) =

{
0, d = s

1, d 6= s

� Mean risk = mean classification error.



Bayes classification

� Usually required: minimize mean error Bayes classification task.

� Optimal classification of ~x:

δ∗(~x) = arg min
d

∑
s

l(s, d)︸ ︷︷ ︸
0 if d=s

P (s|~x) = arg min
s

[1− P (s|~x)] = arg max
s
P (s|~x)

� We thus choose the most probable class for a given attribute vector.

� Usually we are not given P (s|~x) but only a finite (multi)set of

� Training examples (~x1, s1), (~x2, s2), . . . (~xl, sl) drawn i.i.d from P (~x, s).

� We might want to estimate P (s|~x)

P (s|~x) ≈ # examples where~xi = ~x and si = s

# examples where ~xi = ~x

� This is usually impossible:

− X may be uncountable (~x continuous). OK, discretization possible.

− To estimate P (s|~x) with a fixed accuracy, we need O(exp(n)) examples (n . . . width of ~x).

− Combinatorial curse.

− Bayes classification provides a lower bound on classification error, but that is usually not

achievable because P (s|~x) is not known.



Naive Bayes classification

� For efficient classification we must thus rely on additional assumptions. A basic example:

� In the exceptional case of statistical independence between x(i) components for each

class s it holds

P (~x|s) = P (x(1)|s) · P (x(2)|s) · . . .

� Use simple Bayes law and maximize:

P (s|~x) =
P (~x|s)P (s)

P (~x)
=
P (s)

P (~x)
P (x(1)|s) · P (x(2)|s) · . . . =

� No combinatorial curse in estimating P (s) and P (x(i)|s) separately for each i and s.

� No need to estimate P (~x). (Why?)

� N.B. P (s) may be provided apriori.

� Naive = when used despite statistical dependence btw. x(i)’s.



Neighbor-based classification

� Assumption: similar objects fall in the same class.

� Similarity - small distance in X .

� A fuction, called a metric: ρ : X ×X → < such that ∀x, y, z

− ρ(x, y) ≥ 0

− ρ(x, x) = 0

− ρ(x, y) = ρ(y, x)

− ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

� Examples:

− Euclidean metric for X = <n:

ρE(~x1, ~x2) =
√∑

i(x1(i)− x2(i))2

− For X = {0, 1}n, ρ2
E is equal to the Hamming metric, giving the number of non-equal

corresponding components.



k-NN

� k-nearest neighbor classification, k-NN.

� Given:

− k ∈ N
− Training examples: (~x1, s1), (~x2, s2), . . . (~xl, sl)

− Metric ρ : X ×X → <

� Goal: classify ~xl+1

� Approach: choose k nearest (to ~x by ρ) examples. Let the majority class therein be the class

for ~xl+1.



Classification flexibility

� How to choose k?

� A general trend: Consider a two-class problem (red/green) with noisy training examples

(some si misclassified).

k = 1: Good fit of training

data, small tolerance to noise.

Bayes classifier: less flexible

than 1-nn, more flexible than

15-nn.

k = 15: Poor fit to training

data. Small sensitivity to no-

ise.

� Note: the shown Bayes classifier was constructed from known P (s|~x).

� Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very

different from the optimal B/C.

� Optimal k somewhere in the middle. Still pending: how to determine the best value?



Validation

� Mean risk r(δ) of classifier δ corresponds to the relative frequency of its misclassifications

(convergence in the limit...), or ‘error rate’.

� Define training error TE(δ) as the error rate on v training data.

� Is TE(δ) a good estimate of r(δ)?

� Earlier: 1-nn is not a good classifier, despite having training error 0.

� TE(δ) is (usually) not a good estimate of r(δ) because it is biased. To estimate r(δ) in

an unbiased way:

− split available data into a training set (~x1, s1), . . . (~xl, sl) and an independent testing
set (~xl+1, sl+1), . . . (~xl+m, sl+m)

− (e.g. by a 75% - 25% split).

− Construct (train) classifier on the training set.

� Error rate on the testing set is an unbiased estimate of r(δ).

� Unbiased does not mean accurate.


