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Literature, demos

» Duda, Hart, Stork: Pattern Classification http://www.crc.ricoh.com/~stork/DHS.html

s Ch. Bishop, Pattern Recognition and Machine Learning http://research.microsoft.
com/en-us/um/people/cmbishop/prml/

Kotek, Vysoky, Zdrahal: Kybernetika 1990

Classification toolbox
http://stuff.mit.edu/afs/sipb.mit.edu/user/arolfe/matlab/

Statistical Pattern Recognition Toolbox

http://cmp.felk. cvut CZ/Cmp/SOftware/Stprtool/
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MOtivatiOrl example I [Duda, Hart, Stork: Pattern Classification]

| Preprocessing |
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| Feature extraction |
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| Classification |
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"salmon" "sea bass"

m Factory for fish processing

m — 2 classes - Detection of salmon and sea bass based on a camera

— Features - we measure width,length, etc.

» the TASK is: FISH CLASSIFICATION




Motivation example Il
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s We estimate the feature distribution using histograms

s Wrong classification due to histograms overlapping

m Improvement-feature combination
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m Linnear, quadratic, k-nearest classifier

s Over-fitting, Generalization, error minimalization
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We know probability distribution

= Yes - Bayes classification
= Apriori distribution p(s;) and conditional probability p(x|s;)
= Thus p(s;, z) = p(x|s;)p(s;) = p(s;|z)p(x)

= Bayes theorem

posterior < likelihood X prior

s Classification arg max; p(s;|z)

= p(xz]s1) = 5,p(z]s1) = 3, (in images below s; = w;)
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Error minimization - maximum aposterior probability (MAP )i

[llustrative example

p(s1,2) = p(z|s1)p(s1),p(s2, ©) = p(x]sz)p(ss), see image below (s; = ')
Classification error: p(error) = p(z € Ry, Cs) + p(x € Ry, C1)

Error p(z € Ry, Cy) - Reda and green area - objects are classified as C; instead of C}

Error p(x € Rs, () - blue area - objects are classified as (' instead of (5

Classification error minimization - both probabilities are overlapping in x (red area will disap-
pear)

p(z,C1)

p(;C,Cz)
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Historical note - Thomas Bayes

m [homas Bayes - published in 1736 study An Introduction to the Doctrine of Fluxions, and a
Defence of the Mathematicians Against the Objections of the Author of the Analyst

m Example: solution of white and black bowls using Bayes equation




Probability distribution is unknown

= Training and test data

m [here are thousand classifiers - e.g. decision trees

level O

level 1

Banana Apple @ level 2

big small sweet sour

Watermelon Apple Grape

Grapefruit Lemon Cherry  Grape level 3



Decision making under uncertainty

= An important feature of intelligent systems

make the best possible decision

in uncertain conditions.
s Example: Take a tram OR subway from A to B?

Tram: timetables imply a quicker route, but adherence uncertain.

Subway: longer route, but adherence almost certain.

s Example: where to route a letter with this ZIP?

157007 157067 152007 152067

s What is the optimal decision?

s Both examples fall into the same framework.



Example [Kotek, Vysoky, Zdrahal: Kybernetika 1990]

s Wife coming back from work. Husband pondering what to cook for dinner.
s 3 dishes ¢ decisions in his repertoir:

nothing ... don’t bother cooking =- no work but makes wife upset
pizza ... microwave a frozen pizza = not much work but won't impress
g. T.c. ... general Tso’s chicken =- will make her day, but very laborious.

m Husband quantifies the degree of hassle incurred by the individual options. This depends on
how wife is feeling on her way home. Her state of mind is an «# uncertain state. Let us
distinguish her mood:

good . .. wife is feeling good.
average . .. wife average mooded.
bad ... wife bad mooded.

s For each of the 9 possible situation (3 possible decisions X 3 possible states) the hassle is
quantified by a «# loss function [(d, s):

l(s,d) | d= nothing d = pizza d=g.T.c.
s = good 0 2 4

S = average 5 3 5
s = bad 9 6




Example (cont’d)

m Husband tries to estimate wife's state of mind through an experiment. He tells her he acci-
dentally overtaped their wedding video and observes her reaction

= Anticipates 4 possible reactions:

mild . .. all right, we keep our memories.
irritated . .. how many times do | have to tell you....
upset ... Why did | marry this guy?

alarming . .. silence
= The reaction is a measurable «# attribute (of the state of mind).

m From experience, husband knows how individual reactions are probable in each state of mind;
this is captured by conditional distribution P(zx|s).

Plzl|s)|lx= = x= o=

mild irritated upset alarming
s = good| 0.5 0.4 0.1 0
s = average | 0.2 0.5 0.2 0.1
s = bad| 0 0.2 0.5 0.3




Decision strategy

Decision strategy: a rule selecting a decision for any given value of the measured attribute(s).

= i.e. function d = §(z).

Example of husband’s possible strategies:

x = mild x = irritated x = upset x = alarming

nothing nothing pizza g T.c
nothing pizza g.T.c g.T.c
g T.c g T.c g T.c g T.c

nothing nothing nothing nothing

Overall, 3* = 81 possible strategies (3 possible decisions for each of the 4 possible attribute
values).

= How to define which strategy is best? How to sort them by quality?

Define the «# risk of a strategy for state s: mean loss value conditioned on s.




MiniMax

s Example: risk of strategy J; at state s = good is
R(61, good) = l(good, d1(mild)) - P(mild|good) + [(good, 61 (irritated)) - P(irritated|good)
+1(good, §1(upset)) - P(upset|good) + [(good, §1(alarming)) - P(alarming|good)
= [(good, nothing) - 0.5 + [(good, nothing) - 0.4 + [(good, pizza) - 0.1 + [(good, g. T.c.) - 0
=0-05+0-04+2-01+4-0=0.2
= Similarly: R(d1, average) = 4.4 a R(d1, good) = 8.3
s Maximum risk of strategy d; (over all possible states) is thus 8.3.
= Similarly: maximum risk of strategy 43 is 6.

s 7 MiniMax criterion: out of two strategies, whichever has a smaller maximum risk is
superior.

m [hus 03 is better than 9; by MiniMax.

m The best strategy 0* by Minimax is one that minimizes the maximum risk:

0" = arg mdin max R(6, s)



Bayesian decision making

s What if husband knows that wife usually is feeling fine? More generally: he knows how probable
her state of minds are, i.e. he knows the distribution P(s). For example:

s = good s = average s = bad

0.2 0.1

m Note that these probabilities do not influence MiniMax-based decisions.

= Given P(s) we can calculate the «# mean risk of a strategy over all possible states:

m For example.

r(6)=02-07+44-02483-0.1=185
r(d3) =4-074+5-0246-0.1=4.4

s 7 Bayes criterion: out of two strategies choose the one with smaller mean risk. From the
Bayesian viewpoint 0 is superior to 0s.

= In this case, contrary to MiniMax!



Bayes optimal strategy

s The ## Bayes optimal strategy: one minimizing mean risk. That is

6" = arg main r(9)

s From P(z|s)P(s) = P(s|x)P(x) (Bayes rule), we have
r(6) =Y R(0,s)P(s) =Y > I(s,6(x))P(x|s)P(s)

=YD Us(x),5)P(s|z)Plx) = Y Pla) D U(s, 8(x))P(s|)

o

~

«7 Conditional risk

m [he optimal strategy is obtained by minimizing the conditional risk separately for each z:

m Unlike for MiniMax, there is no need to evaluate the risk of all possible strategies. The Bayes
optimal strategy can be calculated point-wise by determining the optimal decision for individual
attribute values .



Statistical decision making: wrapping up

= Given:

A set of possible states: §

A set of possible decisions: D

A loss function[: D xS — R

The range X of the attribute

Distribution P(z|s), x € X,s € S.
= Define:

Strategy: function 6 : X — D

Risk of strategy 0 at state s € S: R(d,s) = > I(s,6(x))P(z]s)
= MiniMaxov problem:

Further given: admissible strategy set A.
Goal: find the optimal strategy §* = arg mingea maxses R(d, $)

= Bayes problem:

Further given: distribution P(s), s € S.
Further define: mean risk of strategy o: 7(6) = ), R(d,s)P(s)

Goal: find the optimal strategy §* = arg mingea 7(9)
Solution: §*(x) = argming Y I(s, d)P(s|x)



Pattern recognition

= Example task:

NG e
X177 _E\x32
can formulate as a i EEE
statistical decision g
task ]
What digit is this? Attribute = pixel value vector.

= Attribute-based recognition of digits: classification into on of classes 0...9 by the
attribute vector.

m A special case of statistical decision theory:

Attribute vector ¥ = (x1, T2, ... ): pixels # 1, 2, ...
State set S = decision set D = {0, 1,...9}.

State = actual class, Decision = recognized class.

0, d=s
l(s,d){1 d+4s

s Mean risk = mean classification error.

Loss function:



Bayes classification

m Usually required: minimize mean error ¢ Bayes classification task.
s Optimal classification of I
0" (¥) = arg mjnZMP(sﬁ’) = arg msin[l — P(s|7)] = arg max P(s|7)

S 0if d=s

s We thus choose the most probable class for a given attribute vector.

s Usually we are not given P(s|Z) but only a finite (multi)set of

= Training examples (71, $1), (T2, $2), - .. (77, 5;) drawn i.i.d from P(Z,s).

s We might want to estimate P(s|¥)

. # examples wherex; = ¥ and s; = s
P(s|Z) =

# examples where &, = T

s This is usually impossible:

X may be uncountable (¥ continuous). OK, discretization possible.
To estimate P(s|¥) with a fixed accuracy, we need O(exp(n)) examples (n ... width of Z).

Combinatorial curse.

Bayes classification provides a lower bound on classification error, but that is usually not
achievable because P(s|Z) is not known.



Naive Bayes classification

m For efficient classification we must thus rely on additional assumptions. A basic example:

= In the exceptional case of statistical independence between (i) components for each
class s it holds

Use simple Bayes law and maximize:

P(si@) = £ (3125])3 (s) _ i((j_j,)P(a:(l)ls) P@)]s) - ...

~—r"

s No combinatorial curse in estimating P(s) and P(x(i)|s) separately for each i and s.
s No need to estimate P(%). (Why?)

N.B. P(s) may be provided apriori.

Naive = when used despite statistical dependence btw. x(i)'s.



Neighbor-based classification

m Assumption: similar objects fall in the same class.
m Similarity - small distance in X.

m A fuction, called a metric: p: X x X — R such that Vx,y, 2

p(z,y) >0
p(z,z)
p(z,y)

— 0
= p(y, )
plz,2) < p(z

y) + p(y, 2)

= Examples:

Euclidean metric for X = R":

For X = {0,1}", p% is equal to the Hamming metric, giving the number of non-equal
corresponding components.



kE-NN

s «¥ k-nearest neighbor classification, k-NN.

= Given:

ke N
Training examples: (71, $1), (T2, $2), - . . (77, 1)
Metricp: X x X = R

» Goal: classify 77,

s Approach: choose k nearest (to Z by p) examples. Let the majority class therein be the class
fOr fl+1.



Classification flexibility

s How to choose k7?

= A general trend: Consider a two-class problem (red/green) with noisy training examples
(some s; misclassified).

k — 1: Good fit of training Bayes classifier: less flexible & = 15: Poor fit to training

: than 1-nn, more flexible than  data. Small sensitivity to no-
data, small tolerance to noise.

15-nn. Ise.

s Note: the shown Bayes classifier was constructed from known P(s|Z).

s Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very
different from the optimal B/C.

= Optimal k somewhere in the middle. Still pending: how to determine the best value?



Validation

s Mean risk r(6) of classifier § corresponds to the relative frequency of its misclassifications
(convergence in the limit...), or ‘error rate’.

s Define training error T E()) as the error rate on v training data.

Is TE(J) a good estimate of r(4)?

Earlier: 1-nn is not a good classifier, despite having training error 0.

o TFE()) is (usually) not a good estimate of 7(§) because it is biased. To estimate 7(¢) in
an unbiased way:

split available data into a training set (71, s1),... (7}, s;) and an independent testing
set (fl—}-l) Sl—|—1)7 S (fl—{—ma Sl—f-m)
(e.g. by a 75% - 25% split).

Construct (train) classifier on the training set.

Error rate on the testing set is an unbiased estimate of r(§).

Unbiased does not mean accurate.



