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1 Introduction

In many �elds of human interest, it is necessary to precisely estimate the actual
state of a system using some noisy sensors. There is more than one method of
doing so according to the system properties. It is extremely computationally
challenging to solve the arbitrary system with unknown stochastic parameters
such as its Joint Probability Distribution (PX) or if it contains memory.

The stochastic systems are usually simpli�ed as a Markov chain or a hidden
Markov chain. This process, is then called Markov process and it is assumed as
a memoryless discrete system. The future state Xk+1 of this system is de�ned
as a vector function of the actual state Xk , and the input of a system uk+1 is
given by:

Xk+1 = f [Xk, uk+1] + nk+1, (1)

where f [. , .] is a process model, and nk+1 is an additive process noise. We
usually do not observe the state of a system directly, but we use sensors which
output is represented by so�called observation vector zk+1 given by:

zk+1 = h [Xk+1, uk+1] + wk+1, (2)

where h [. , .] is an observation model, and wk+1 is an additive measurement
noise. The problem is to estimate system state and its error.

There are several �ltering methods how to obtain system state and error
of the state estimate depending on the process and observation models. If the
model is a linear function of the process state and its input the Kalman Filter
(KF) is the optimal solution [1]. When the model is not a linear function, then
KF is not optimal and may even not converge. From the second half of the 20th
century, the Extended Kalman Filter (EKF) is mainly used for the solution
of nonlinear systems. The problem is that the EKF is the only linearization
of the process function by Taylor series of the �rst order by computation of
the Jacobian of the process function. This method can be di�cult because
Jacobian may not be de�ned. Another problem is that if the process model is
highly nonlinear the Jacobian is a poor approximation and the error of estimate
is high.
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For this reason, a new method was developed in the 1990s. The method
is based on particle �ltration, but its main advantage is that for certain sys-
tems it gives better precision of the estimate than particle �lter with far lower
computational cost. This method is called Unscented Kalman Filter (UKF) [1]
and it is based on evolving only low number of correctly chosen particles, called
sigma points, through the nonlinear system function and the approximating
the evolved sigma points by Gaussian distribution [2], [3]. Also, handy is UKF
tutorial created by Cyrill Stachniss.

This project aims to implement UKF and use it to �lter data obtained
from noisy and inaccurate sensors to obtain �ltered state of a nonlinear system
which represents tank�like four�wheel robot position and orientation. Since not
all sensor parameters are perfectly known it is necessary to optimize assigned
stochastic sensor parameters to minimize Mean Square Error (MSE) of the
estimated robot position. More information and details will be speci�ed in the
following section.

Figure 1: Example of the four�wheel robot.

2 Competition setting

The task is to realize Unscented Kalman Filter for estimation of the position and
the heading H of a di�erential drive four�wheel robot, which can be modelled
as a unicycle by its velocity v in the direction of H and angular velocity ω. The
heading is de�ned as an orientation angle of the robot in used 2D Cartesian
coordinate system. Details about di�erential drive can be found here.

The problem is that unicycle model is not correct since the four�wheel robot
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movement is more "tank�like." This fact is causing nonlinearity in the system
model because wheels are slipping while turning. At the same time when the
set velocity is low and angular velocity is not set to zero robot is not able to
overcome friction between wheels and surface and will not move at all.

Usually, wheeled robots are navigated using mainly Global Navigation Satel-
lite System (GNSS) receiver and Inertial Measurement Unit (IMU). In this task,
the available sensors are Real Time Kinematics (RTK) Global Positioning Sys-
tem (GPS), hall sensors attached to motors and magnetometer. The RTK
GPS is sending data using so�called National Marine Electronics Association
(NMEA) protocol. For simplicity, the GPS data are given as a vector of 2D
Cartesian position, velocity, and the heading. Assume white Gaussian noise of
the position with zero mean µxy = 0 m and standard deviation σxy = 0.3 m. Sta-
tistical parameters of measured velocity and the heading with GPS are tricky
because the precision of velocity decrease with decreasing velocity. Heading
measurement depends on velocity if a two antenna GPS receiver solution is not
used. For this reason, the low pass �lter is used and when velocity is a lower
than v < 0.2 ms−1 then the measuring of velocity and the heading is stopped,
and value in NMEA is zero. Again, for simplicity assume Additive white Gaus-
sian noise (AWGN) if v ≥ 0.2 ms−1 with following parameters: µv = 0 ms−1,
σv = 0.03 ms−1, µH = 0 rad, σH = 0.01 rad. Another problem is that GPS re-
ceiver sampling rate is 1 Hz, but the system is aimed for sampling period given
by constant TS in the UKFdata.mat. Also, a short outage of the GPS signal can
occur (seconds).

Hall sensors work with excellent precision at submillimetre level, but it can-
not be properly used if wheels are slipping during turns the following speed
according to di�erential drive model. The distance between robot right and left
wheel is L=0.44 m. Wheel radius is 0.13 m. Used Hall sensor measure distance
in revolutions with 2000 pulses per revolution with σ = 1 pulse. The output
format is stored separate from the right ∆rR and left ∆rL motor as a change of
distance travelled over one sampling period in a number of revolutions.

Finally, the magnetometer is used for measuring absolute heading value of
the robot. The problem is that magnetic �eld measured by the magnetometer
can be easily in�uenced by near electromagnetic �eld produced by motors and by
the magnetic materials near the sensor. But it is possible to correct the error and
assume zero mean. High precision magnetometers can achieve heading precision
around 0.5◦ RMS if the tilt is lover than ±15◦. Assume an only low�cost sensors
are used, the heading precision is σ = 0.1 rad.

Assume independent observation zk+1 and state Xk vector. In other words,
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every used covariant matrix Σ is diagonal. The system function is given by:

Hk+1 = Hk + TSωk+1 + nH k+1,

xk+1 = xk + TS vxk+1e
−2TSω

2
k+1

(
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��ω0.6
k+1

��
e5TSvk+1

)10
+ nxk+1,

yk+1 = yk + TS vyk+1e
−2TSω

2
k+1
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)10
+ nyk+1,

(3)

where v and ω are inputs of the system u, TS is time step between system
samples in seconds, vx and vy are given by:

vx = v cos H,

vy = v sin H.
(4)

The nonlinearity is located only in position increment, and this function is
dependent on control signals of the system v and ω. This nonlinear increment
function of the position ∆x in x�axis for H = 0 rad is shown in �g. (2). If the ω
is increasing the wheel slipping increase and position increment decrease. For
small values of v and higher values of ω robot will not even move.
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Figure 2: Nonlinear system function used for prediction of the system state.

The robot trajectory is obtained according to speci�ed system model using
randomly generated set of controlling signals v and ω. Example trajectory of
the robot is shown in �g. (3). The measuring is generated according to speci�ed
sensors from this trajectory. In �gure (3) is shown position measuring obtained
from GPS.
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Figure 3: Example of robot trajectory and measured position.

The task is to fuse all measured data and obtain actual robot state. The
real trajectory can be used to optimize covariant matrices to achieve minimal
MSE of the estimate. The attached input data in UKFdata.mat contain Matlab
variables necessary for solving this task. The input data are de�ned according
to usual notation for UKF, where matrix u is containing N inputs of the system
in a following format:

u =
[

v ω
]T
, (5)

and the observation z is containing N measurements stored in format:

z =
[

xGPS yGPS vGPS HGPS ∆rR ∆rL Hmag

]T
. (6)

Finally, the correct robot state is stored in a struct RobotTrue. The solution
should contain computation of a MSE to compare output of a created UKF
with the robot true state stored in a struct RobotTrue. The output MSE value
should be separated for a each coordinate and a heading.
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3 Criteria

• This project can be selected by a unlimited number of students. However,
no collaboration between students is expected.

• The project should be submitted including short documentation describing
how the algorithm works.

• Like for regular projects, a short presentation (a couple of minutes) is
expected.

• To be awarded with credits it is necessary to implement UKF to extrap-
olate observation to sampling period given by TS.

• In competition, the minimal MSE is judged, and the �rst n students
achieving the minimal MSE will be awarded with prices.

• No toolboxes or external codes and libraries (dll, mex) are allowed.

• It is possible to always withdraw from the competition and select of reg-
ular projects. This decision should be discussed with lecturers, and their
approval is required.
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