Electromagnetic Field Theory 1(fundamental relations and definitions)

Lukas Jelinek

lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic

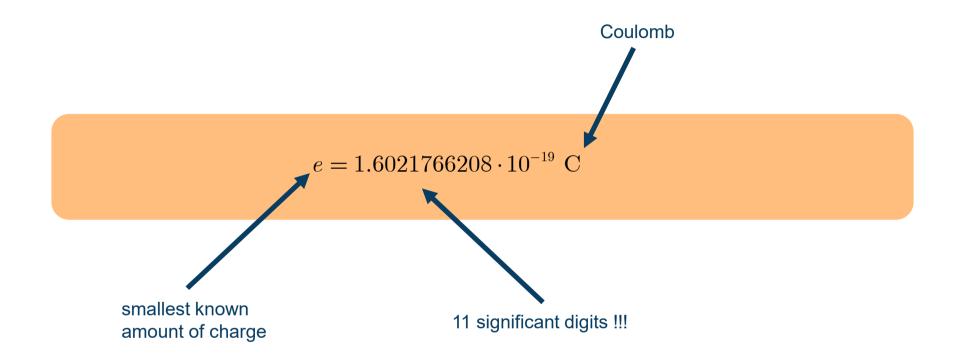
Ver. 2015/12/16

Fundamental Question of Classical Electrodynamics

A specified distribution of elementary charges is in state of arbitrary (but known) motion. At certain time we pick one of them and ask what is the force acting on it.

Rather difficult question – will not be fully answered

Elementary Charge



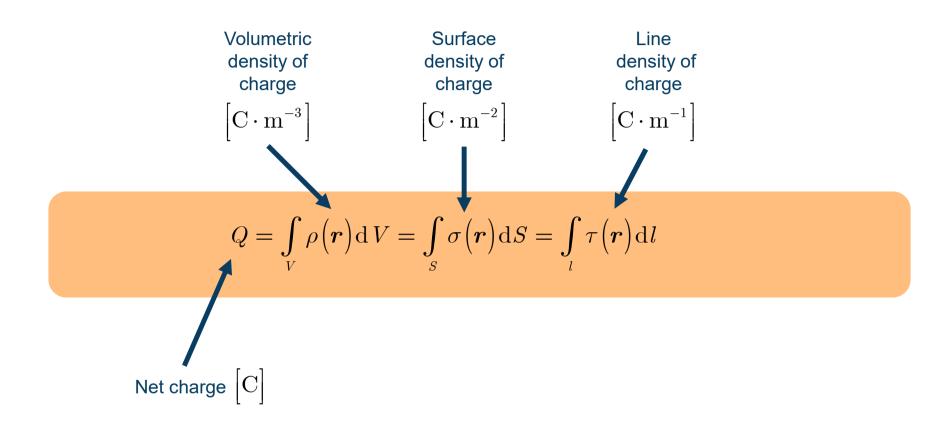
As far as we known, all charges in nature have values $\pm Ne, N \in \mathbb{Z}$

Charge conservation

Amount of charge is conserved in every frame (even non-inertial).

Neutrality of atoms has been verified to 20 digits

Continuous approximation of charge distribution



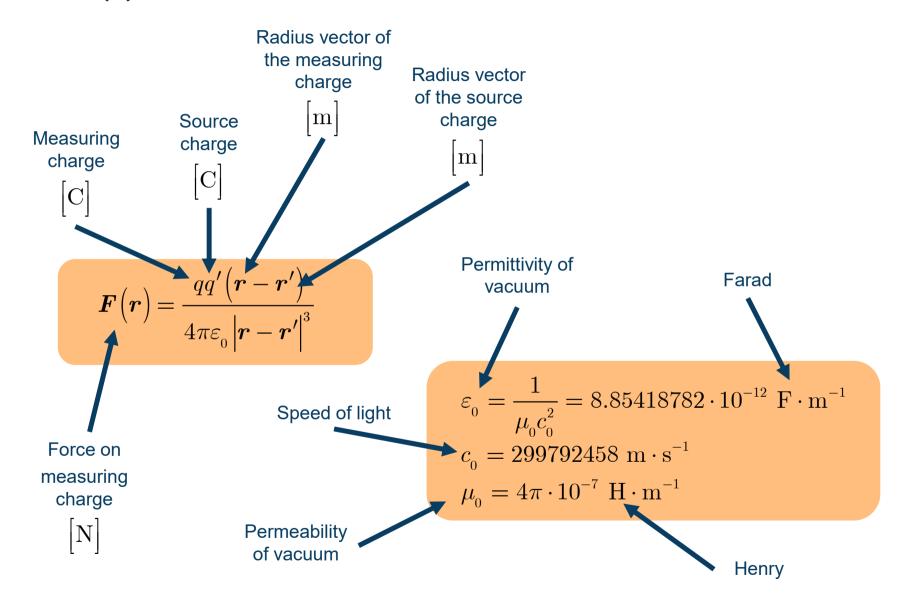
Continuous approximation allows for using powerful mathematics

Fundamental Question of Electrostatics

There exist a specified distribution of static elementary charges. We pick one of them and ask what is the force acting on it.

This will be answered in full details

Coulomb('s) Law



ELECTROSTATICS

7 / XXX

Coulomb('s) Law + Superposition Principle

$$oldsymbol{F}ig(oldsymbol{r}ig) = rac{q}{4\piarepsilon_0} \sum_n rac{q_n'ig(oldsymbol{r}-oldsymbol{r}_n'ig)}{ig|oldsymbol{r}-oldsymbol{r}_n'ig|^3}$$

Entire electrostatics can be deduced from this formula

Electric Field

$$\boldsymbol{F}\left(\boldsymbol{r}\right) = q\boldsymbol{E}\left(\boldsymbol{r}\right)$$

$$\boldsymbol{E}\left(\boldsymbol{r}\right) = \frac{1}{4\pi\varepsilon_0}\sum_{n}\frac{q_n'\left(\boldsymbol{r}-\boldsymbol{r}_n'\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_n'\right|^3}$$
 Intensity of electric field
$$\begin{bmatrix} \mathbf{V}\cdot\mathbf{m}^{-1} \end{bmatrix}$$

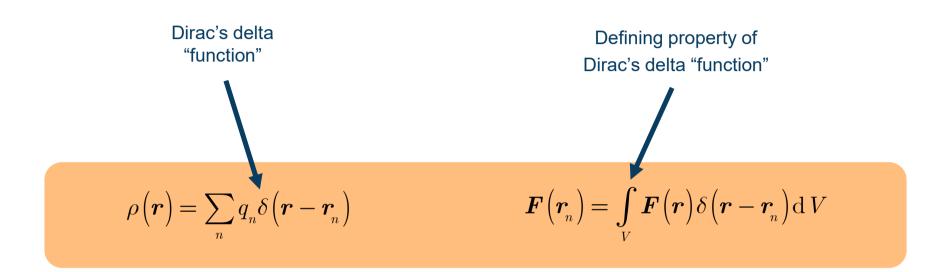
Force is represented by field – entity generated by charges and permeating the space

Continuous Distribution of Charge

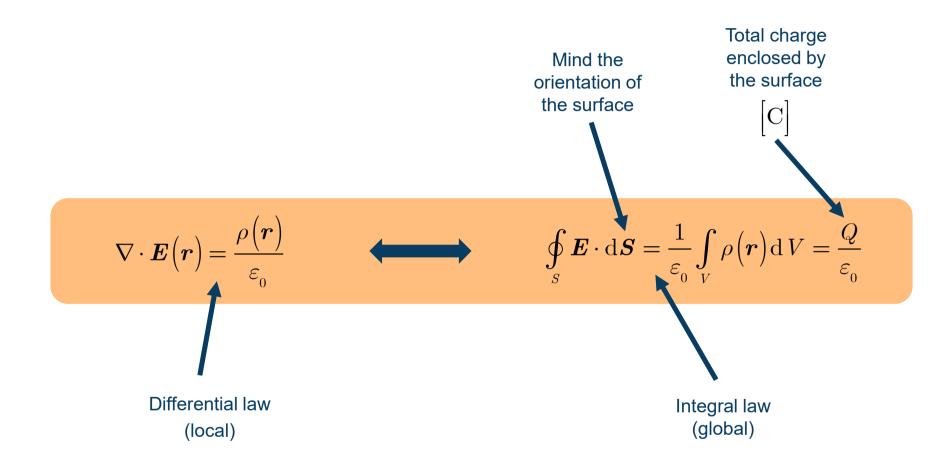
$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{n} \frac{q'_n(\boldsymbol{r} - \boldsymbol{r}'_n)}{\left|\boldsymbol{r} - \boldsymbol{r}'_n\right|^3} \qquad \Longrightarrow \qquad \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho(\boldsymbol{r}')(\boldsymbol{r} - \boldsymbol{r}')}{\left|\boldsymbol{r} - \boldsymbol{r}'\right|^3} dV'$$

Continuous description of charge allows for using powerful mathematics

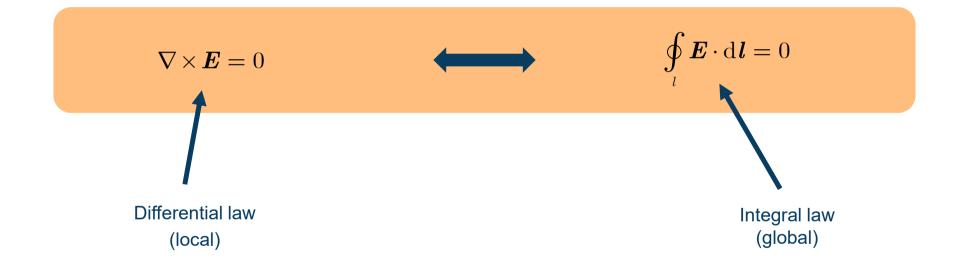
Continuous Description of a Point Charge



Gauss(') Law



Rotation of Electric Field



Various Views on Electrostatics

Differential laws of electrostatics

Coulomb's law

$$\oint_{S} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{S} = \frac{Q}{\varepsilon_{0}}$$

$$\oint_{\mathbf{r}} \mathbf{E} \cdot \mathrm{d} \mathbf{l} = 0$$

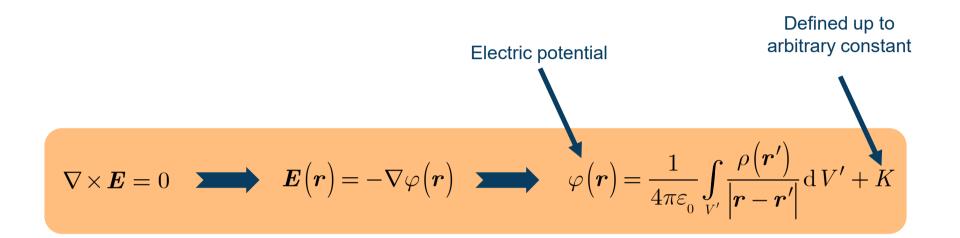
$$abla \cdot oldsymbol{E}ig(oldsymbol{r}ig) = rac{
hoig(oldsymbol{r}ig)}{arepsilon_0}$$

$$\nabla \times \boldsymbol{E} = 0$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho(\boldsymbol{r}')(\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3} dV'$$

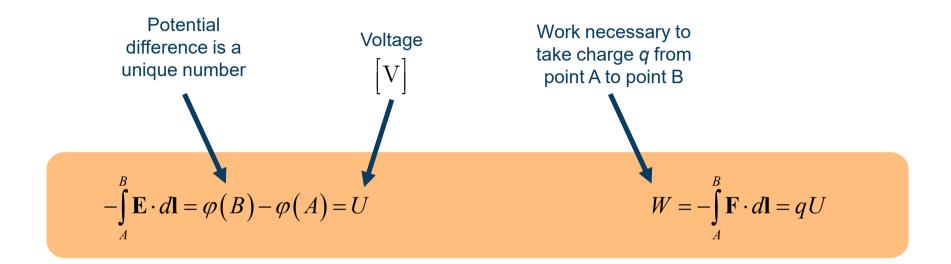
The physics content is the same, the formalism is different.

Electric potential



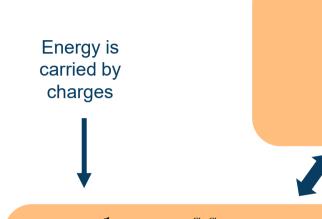
Scalar description of electrostatic field

Voltage

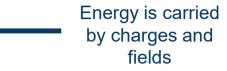


Voltage represents connection of abstract field theory with experiments

Electrostatic Energy



$$W = \frac{1}{2} \int_{V} \rho(\mathbf{r}) \varphi(\mathbf{r}) dV$$



$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\j\neq i}} \frac{q_i q_j}{\left| \boldsymbol{r}_i - \boldsymbol{r}_j \right|}$$

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\j\neq i}} \frac{q_i q_j}{\left| \mathbf{r}_i - \mathbf{r}_j \right|}$$

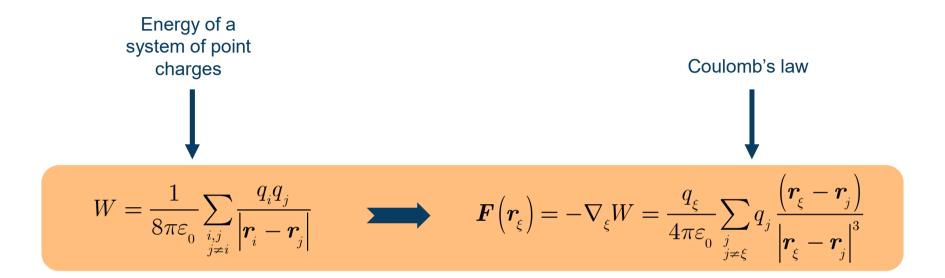
$$W = \frac{1}{8\pi\varepsilon_0} \int_{V} \int_{V'} \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{\left| \mathbf{r} - \mathbf{r}' \right|} dV'dV$$

$$W = rac{1}{2} arepsilon_0 \int\limits_V \left| oldsymbol{E} \left(oldsymbol{r}
ight)
ight|^2 \mathrm{d}\, V$$

Energy is carried by fields

Be careful with point charges (self-energy)

Electrostatic Energy vs Force



Electrostatic forces are always acting so to minimize energy of the system

Conductors

Ideal conductor contains unlimited amount of free charges which under action of external electric field rearrange so as to annihilate electric field inside the conductor.

In 3D, the free charge always resides on the external bounding surface of the conductor.

Generally free charges in conductors move so as to minimize the energy

Boundary Conditions on Conductors

Inside conductor

Just outside conductor

•
$$n(r) \times E(r) = 0 \Leftrightarrow \varphi(r) = \text{const.}$$

$$\boldsymbol{n}\left(\boldsymbol{r}\right)\cdot\boldsymbol{E}\left(\boldsymbol{r}\right) = \frac{\sigma}{\varepsilon_{0}} \quad \Leftrightarrow \quad \frac{\partial\varphi\left(\boldsymbol{r}\right)}{\partial n} = -\frac{\sigma}{\varepsilon_{0}}$$

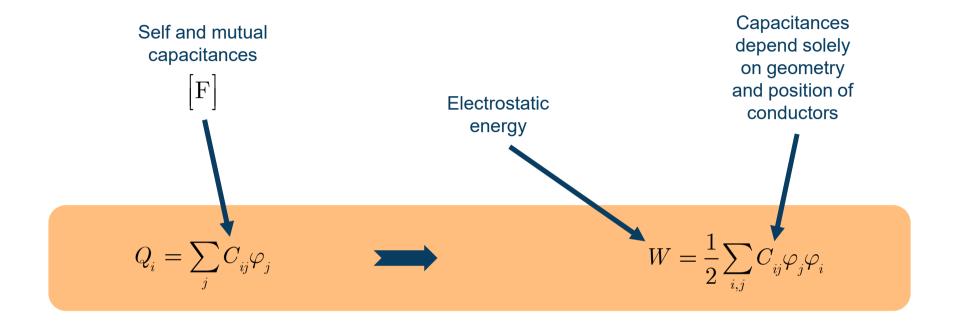
Outward normal to the conductor

Normal derivative

Potential is continuous across the boundary

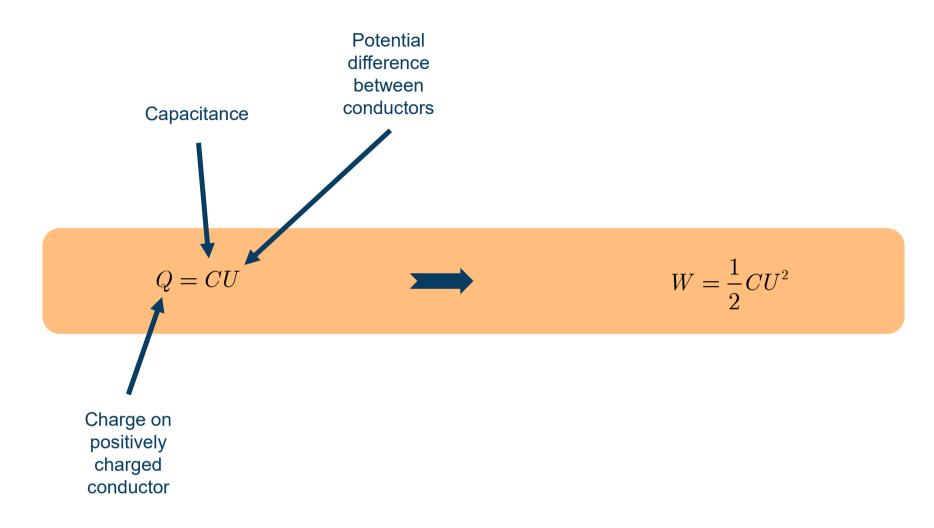
Surface charge residing on the outer surface of the conductor

Capacitance of a System of N conductors



Electrostatic system is fully characterized by capacitances (we know the energy)

Capacitance of a System of two conductors



Poisson('s) equation

$$\Delta arphi \Big(oldsymbol{r} \Big) = -rac{
ho \Big(oldsymbol{r} \Big)}{arepsilon_0}$$

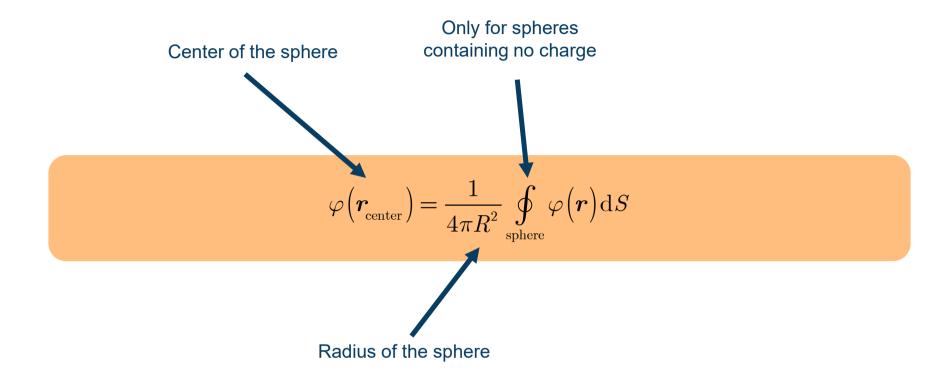
The solution to Poisson's equation is unique in a given volume once the potential is known on its bounding surface and the charge density is known through out the volume.

Laplace('s) equation

$$\Delta\varphi(\boldsymbol{r}) = 0$$

The solution to Laplace's equation is unique in a given volume once the potential is known on its bounding surface.

Mean Value Theorem



The solution to Laplace's equation posses neither maxima nor minima inside the solved volume.

Earnshaw('s) Theorem

Consequence of mean value theorem

A charged particle cannot be held in stable equilibrium by electrostatic forces alone.

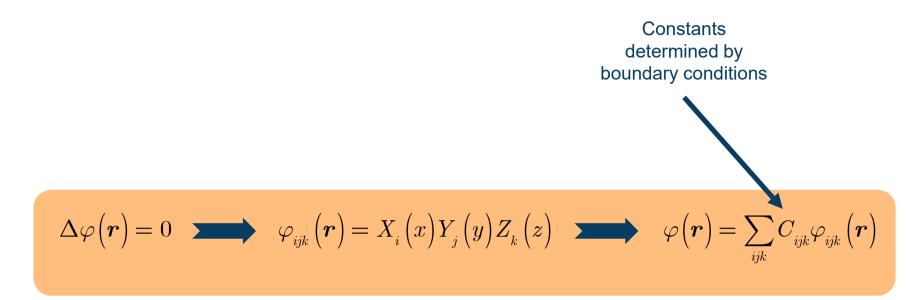
Mind that the solution to Laplace's equation posses neither maxima nor minima inside the solved volume. This means that charged particle will always travel towards the boundary.

Image Method

When solving field generated by charges in the presence of conductors, it is sometimes possible to remove the conductor and mimic its boundary conditions by adding extra charges to the exterior of the solution volume. The unicity theorem claims that this is a correct solution.

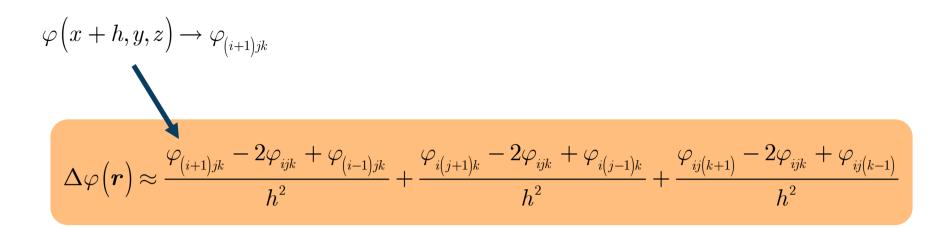
Image method always works with planes and spheres.

Separation of Variables



Semi-analytical method for canonical problems

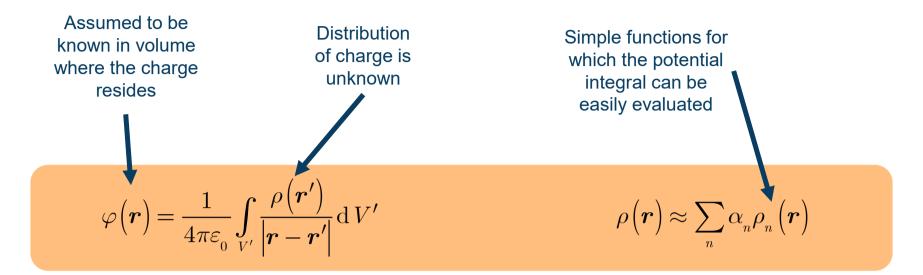
Finite Differences

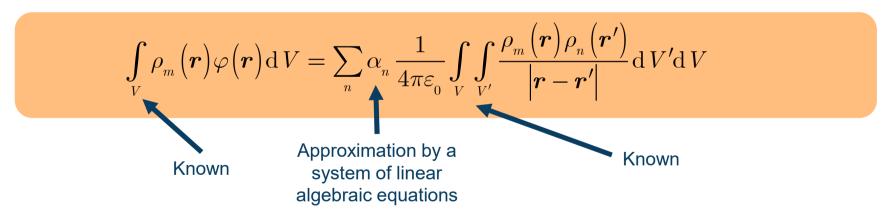


$$\Delta\varphi\left(\boldsymbol{r}\right)=0 \qquad \varphi_{ijk}=\frac{\varphi_{\left(i+1\right)jk}+\varphi_{\left(i-1\right)jk}+\varphi_{i\left(j+1\right)k}+\varphi_{i\left(j-1\right)k}+\varphi_{ij\left(k+1\right)}+\varphi_{ij\left(k-1\right)}}{6}$$
 Approximation by a system of linear algebraic equations

Powerful numerical method for closed problems

Method of Moments





Powerful numerical method for open problems

Dielectrics

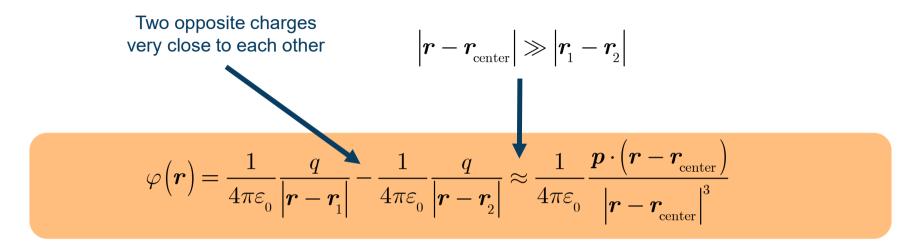
Material in which charges cannot move freely

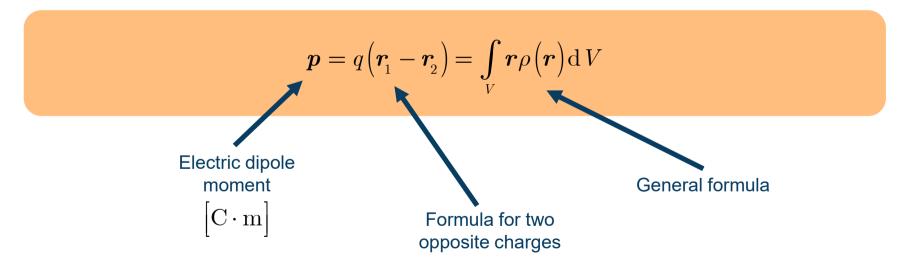
Clusters are electrically neutral

- Charges are forming clusters (atoms, molecules)
- Under influence of electric field the clusters change shape or rotate
- ullet Electric field induces electric dipoles with density $m{P}m{r}$ $\left[ext{C}\cdot ext{m}^{-2}
 ight]$

Number of dipoles in unitary volume

Electric Field of a Dipole



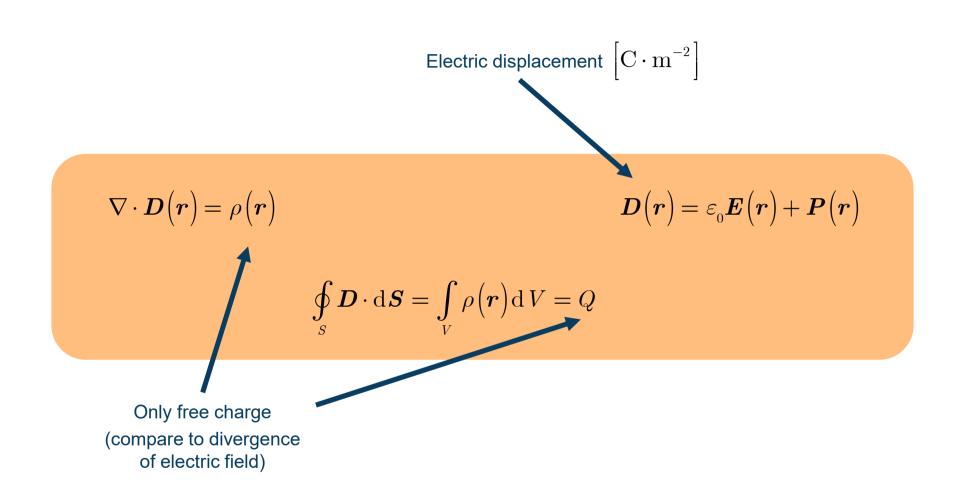


Field Produced by Polarized Matter

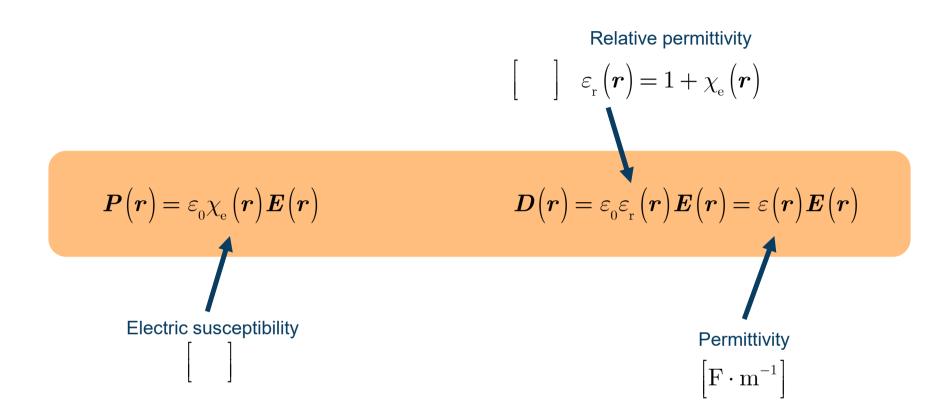
$$\varphi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\mathbf{P}(\mathbf{r}') \cdot (\mathbf{r} - \mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|^3} dV' = \frac{1}{4\pi\varepsilon_0} \oint_{S'} \frac{\mathbf{P}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} \cdot d\mathbf{S}' - \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\nabla' \cdot \mathbf{P}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dV'$$
Only apply at infinitely sharp boundary (unrealistic)

This formula holds very well outside the matter and, curiously, it also well approximates the field inside

Electric Displacement



Linear Isotropic Dielectrics



All the complicated structure of matter reduces to a simple scalar quantity

Fields in Presence of Dielectrics 1/2

Analogy with electric field in vacuum can only be used when entire space is homogeneously filled with dielectric.

$$\nabla \times \boldsymbol{D}(\boldsymbol{r}) = \nabla \times \left[\varepsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}) \right] \neq 0$$
 Inequality is due to boundaries

Analogy with vacuum can only be used when space is homogeneously filled with dielectric

Fields in Presence of Dielectrics 2/2

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = 0 \Leftrightarrow \boldsymbol{E}(\boldsymbol{r}) = -\nabla \varphi(\boldsymbol{r}) \qquad \longrightarrow \qquad \nabla \cdot \left[\varepsilon(\boldsymbol{r}) \nabla \varphi(\boldsymbol{r})\right] = -\rho(\boldsymbol{r})$$

$$\Delta \varphi \left({\bm r} \right) = - \frac{{\rho \left({\bm r} \right)}}{\varepsilon }$$
 Not a function of coordinates

Poisson's equation holds only when permittivity does not depend on coordinates

Dielectric Boundaries

$$m{n}ig(m{r}ig) imesig[m{E}_{\!_1}ig(m{r}ig)-m{E}_{\!_2}ig(m{r}ig)ig]=0\quad\Leftrightarrow\quad m{arphi}_{\!_1}ig(m{r}ig)-m{arphi}_{\!_2}ig(m{r}ig)=0$$

$$\mathbf{n} \left(\mathbf{r} \right) \cdot \left[\varepsilon_{1} \mathbf{E}_{1} \left(\mathbf{r} \right) - \varepsilon_{2} \mathbf{E}_{2} \left(\mathbf{r} \right) \right] = \sigma \quad \Leftrightarrow \quad \varepsilon_{1} \frac{\partial \varphi_{1} \left(\mathbf{r} \right)}{\partial n} - \varepsilon_{2} \frac{\partial \varphi_{2} \left(\mathbf{r} \right)}{\partial n} = -\sigma$$

Normal pointing to region (1)

Both conditions are needed for unique solution

Electrostatic Energy in Dielectrics

$$W = \frac{1}{2} \varepsilon_0 \int_V \left| \mathbf{E}(\mathbf{r}) \right|^2 dV$$

$$W = \frac{1}{2} \int_V \mathbf{E}(\mathbf{r}) \cdot \mathbf{D}(\mathbf{r}) dV$$

Forces on Dielectrics

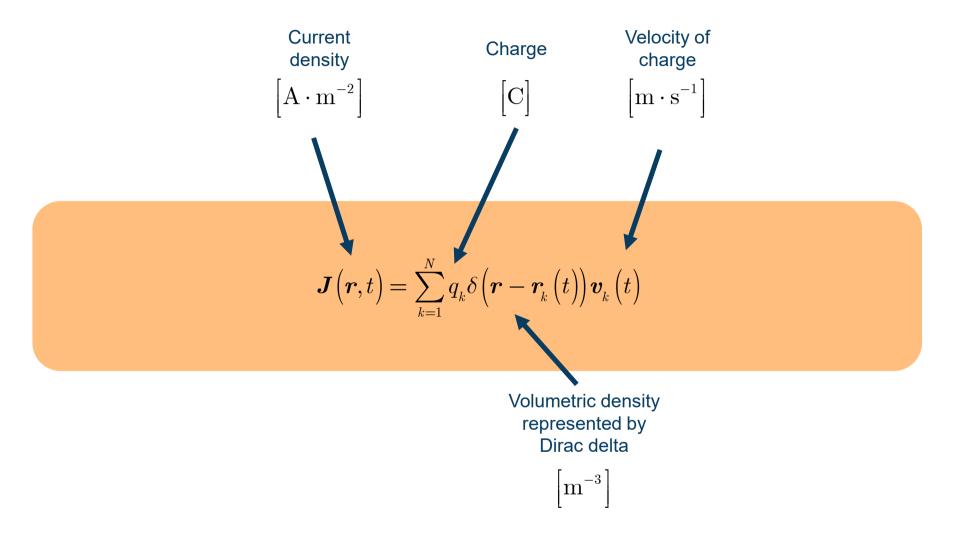
This only holds when charge is held constant

$$W = \frac{1}{2}CU^{2} = \frac{1}{2}\frac{Q^{2}}{C}$$

$$W = \frac{1}{2}\int_{V} \mathbf{E}(\mathbf{r}) \cdot \mathbf{D}(\mathbf{r}) dV$$

$$\mathbf{F}(\mathbf{r}_{\xi}) = -\nabla_{\xi}W$$

Electric Current



Charges in motion are represented by current density

Local Charge Conservation

$$\nabla \cdot \boldsymbol{J} \left(\boldsymbol{r}, t \right) = -\frac{\partial}{\partial t} \sum_{k=1}^{N} q_{k} \delta \left(\boldsymbol{r} - \boldsymbol{r}_{k} \left(t \right) \right) = -\frac{\partial \rho \left(\boldsymbol{r}, t \right)}{\partial t}$$

Charge is conserved locally at every space-time point

Global Charge Conservation

When charge leaves a given volume, it is always accompanied by a current through the bounding envelope

$$\oint_{S} \boldsymbol{J}(\boldsymbol{r},t) \cdot d\boldsymbol{S} = -\frac{\partial Q(t)}{\partial t}$$

Charge can neither be created nor destroyed. It can only be displaced.

Stationary Current

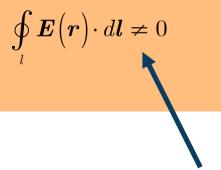
When charge enters a volume, another must leave it without any delay

$$\nabla \cdot \boldsymbol{J}(\boldsymbol{r}) = 0 \qquad \longleftrightarrow \qquad \oint_{S} \boldsymbol{J}(\boldsymbol{r}) \cdot d\boldsymbol{S} = 0$$

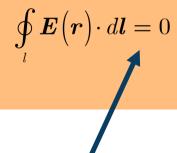
There is no charge accumulation in stationary flow

Electromotive Force

Stationary flow of charges cannot be caused by electrostatic field. The motion forces are non-conservative, are called electromotive forces, and are commonly of chemical, magnetic or photoelectric origin.

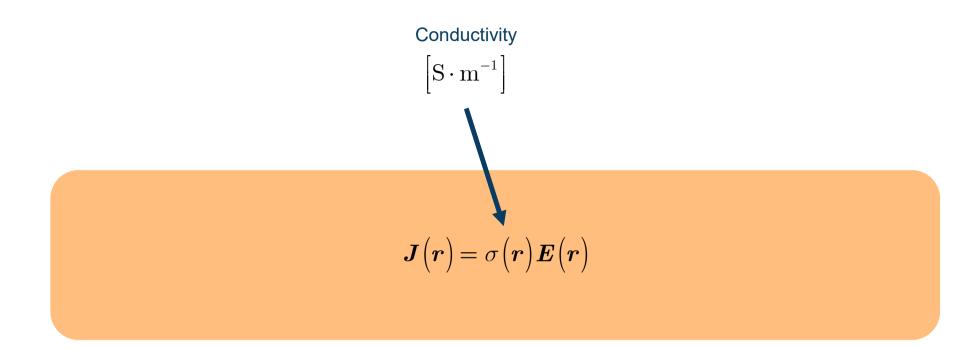


For curves passing through sources of electromotive force



For curves not crossing sources of electromotive force

Ohm('s) Law



This simple linear relation holds for enormous interval of electric field strengths

Boundary Conditions for Stationary Current

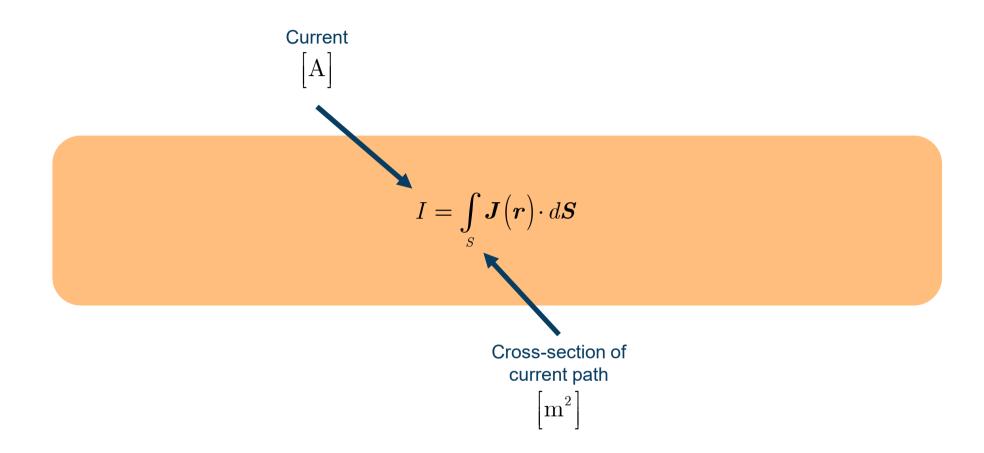
$$\boldsymbol{n}\left(\boldsymbol{r}\right) \times \left[\boldsymbol{E}_{1}\left(\boldsymbol{r}\right) - \boldsymbol{E}_{2}\left(\boldsymbol{r}\right)\right] = 0 \quad \Leftrightarrow \quad \varphi_{1}\left(\boldsymbol{r}\right) - \varphi_{2}\left(\boldsymbol{r}\right) = 0$$

$$\boldsymbol{n} \left(\boldsymbol{r} \right) \cdot \left[\varepsilon_{1} \boldsymbol{E}_{1} \left(\boldsymbol{r} \right) - \varepsilon_{2} \boldsymbol{E}_{2} \left(\boldsymbol{r} \right) \right] = \sigma \quad \Leftrightarrow \quad \varepsilon_{1} \frac{\partial \varphi_{1} \left(\boldsymbol{r} \right)}{\partial n} - \varepsilon_{2} \frac{\partial \varphi_{2} \left(\boldsymbol{r} \right)}{\partial n} = -\sigma$$

$$\boldsymbol{n}(\boldsymbol{r}) \cdot \left[\sigma_{1}\boldsymbol{E}_{1}(\boldsymbol{r}) - \sigma_{2}\boldsymbol{E}_{2}(\boldsymbol{r})\right] = 0 \quad \Leftrightarrow \quad \sigma_{1}\frac{\partial \varphi_{1}(\boldsymbol{r})}{\partial n} - \sigma_{2}\frac{\partial \varphi_{2}(\boldsymbol{r})}{\partial n} = 0$$

Charge conservation forces the continuity of current across the boundary

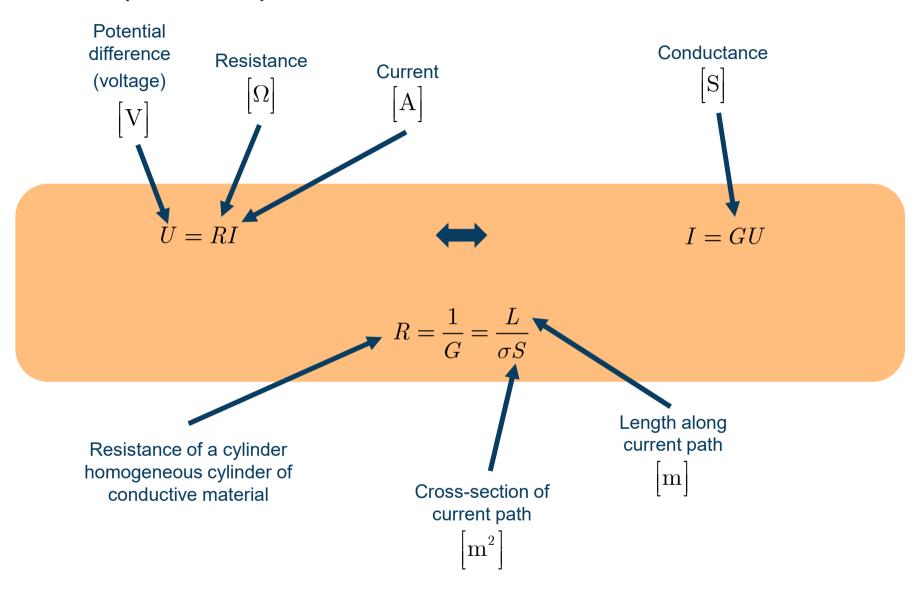
Electric Current



Existence of high contrast in conductivity between conductors and dielectrics allows for well defined current paths.

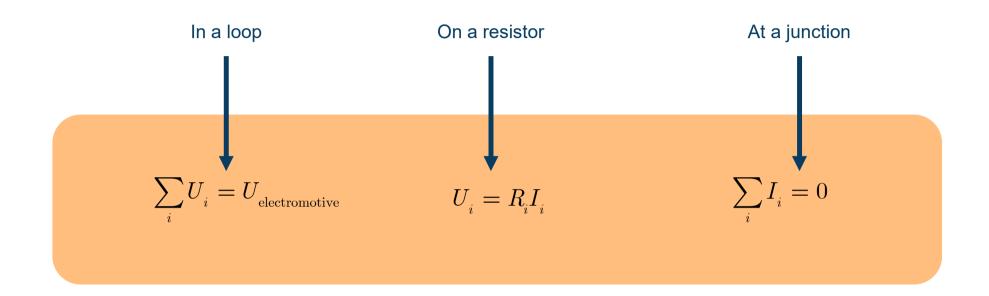
CURRENT

Resistance (Conductance)



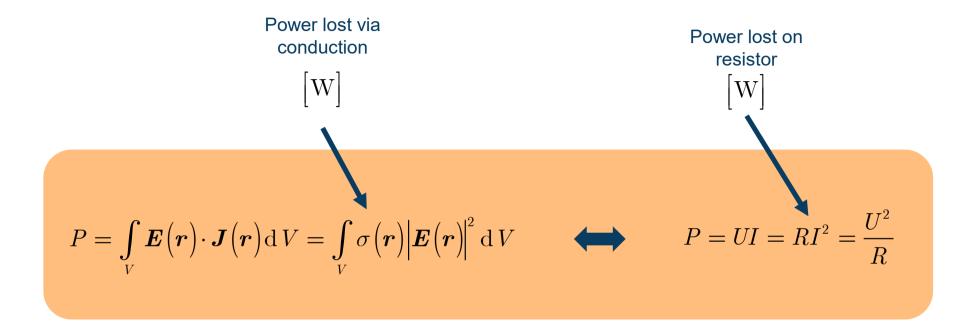
CURRENT 49 / XXX

Resistive Circuits and Kirchhoff('s) Laws



Kirchhoff's laws are a consequence of electrostatics and law's of stationary current flow

Joule('s) Heat

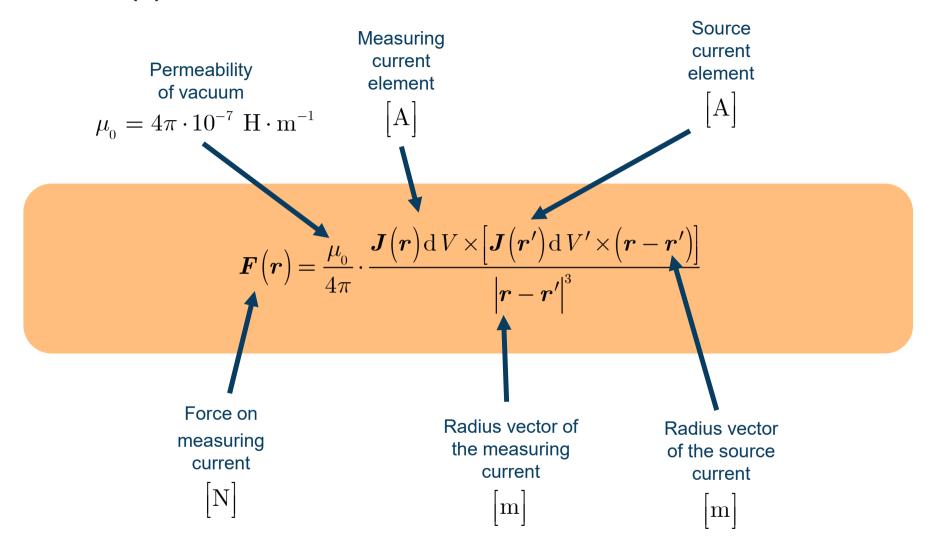


Electric field within conducting material produce heat

Fundamental Question of Magnetostatics

There exist a specified distribution of stationary current. We pick a differential volume of it and ask what is the force acting on it.

Biot-Savart('s) Law

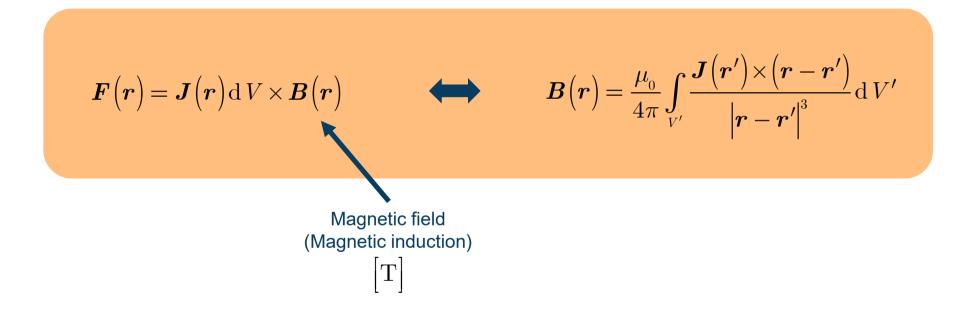


Biot-Savart('s) Law + Superposition Principle

$$\boldsymbol{F}(\boldsymbol{r}) = \boldsymbol{J}(\boldsymbol{r}) dV \times \frac{\mu_0}{4\pi} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{\left|\boldsymbol{r} - \boldsymbol{r}'\right|^3} dV'$$

Entire magnetostatics can be deduced from this formula

Magnetic Field



Divergence of Magnetic Field

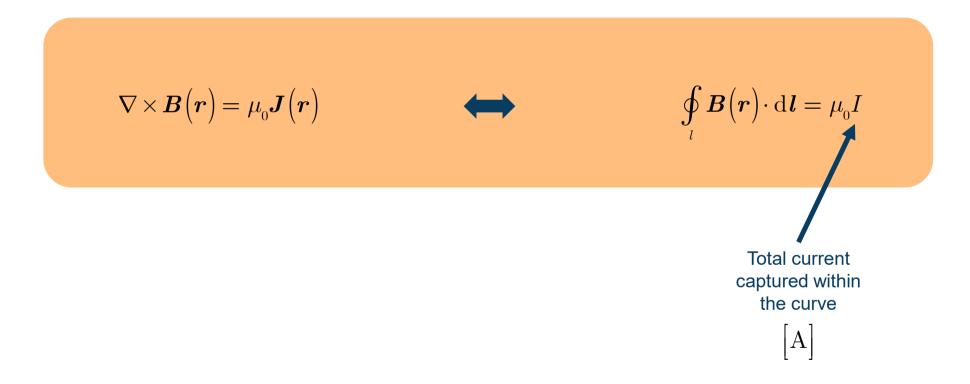
$$\nabla \cdot \boldsymbol{B}(\boldsymbol{r}) = 0$$

$$\leftrightarrow$$

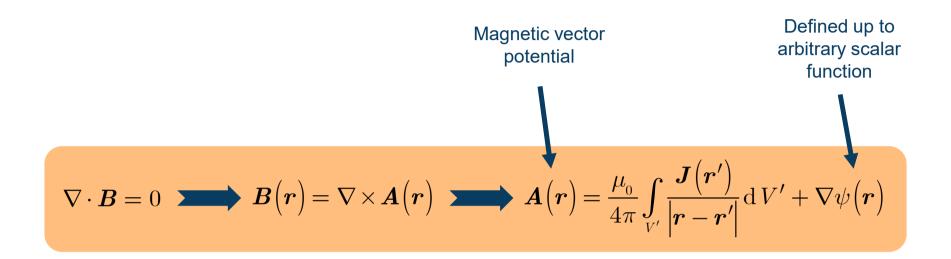
$$\oint_{S} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{S} = 0$$

There are no point sources of magnetostatic field

Curl of Magnetic Field – Ampere('s) Law



Magnetic Vector Potential



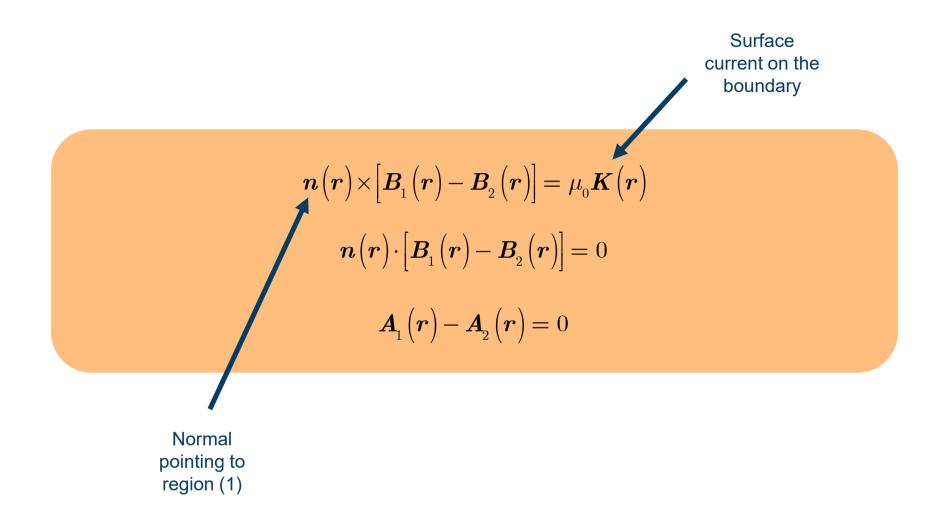
Reduced description of magnetostatic field

Poisson('s) equation

$$\Delta oldsymbol{A}ig(oldsymbol{r}ig) = -\mu_{\scriptscriptstyle 0} oldsymbol{J}ig(oldsymbol{r}ig)$$

The solution to Poisson's equation is unique in a given volume once the potential is known on its bounding surface and the current density is known through out the volume.

Boundary Conditions



Magnetostatic Energy

$$W = \frac{1}{2} \int_{V} \mathbf{A}(\mathbf{r}) \cdot \mathbf{J}(\mathbf{r}) dV \qquad \qquad W = \frac{1}{2\mu_{0}} \int_{V} |\mathbf{B}(\mathbf{r})|^{2} dV$$

For now it is just a formula that works – it must be derived with the help of time varying fields

Magnetostatic Energy – Current Circuits

$$M_{ij} = M_{ji} = \frac{\mu_0}{4\pi I_i I_j} \int_{V_j} \int_{V_i'} \frac{\boldsymbol{J}_j\left(\boldsymbol{r}_j\right) \cdot \boldsymbol{J}_i\left(\boldsymbol{r}_i'\right)}{\left|\boldsymbol{r}_j - \boldsymbol{r}_i'\right|} \mathrm{d}V_i' \mathrm{d}V_j$$

Mutual-Inductance $\left[H \right]$

$$W = \frac{1}{2} \sum_{i=1}^{N} L_{i} I_{i}^{2} + \frac{1}{2} \sum_{i \neq j} M_{ij} I_{i} I_{j}$$

Self-Inductance [H]

$$L_{i} = rac{\mu_{0}}{4\pi I_{i}^{2}} \int_{V_{i}} \int_{V_{i}^{\prime}} rac{oldsymbol{J}_{i}\left(oldsymbol{r}_{i}
ight) \cdot oldsymbol{J}_{i}\left(oldsymbol{r}_{i}^{\prime}
ight)}{\left|oldsymbol{r}_{i} - oldsymbol{r}_{i}^{\prime}
ight|} \operatorname{d}V_{i}^{\prime} \operatorname{d}V_{i}$$

Mutual Inductance – Thin Current Loop

$$\Phi_{ji} = \int\limits_{S_j} \boldsymbol{B}_i \Big(\boldsymbol{r}_j \Big) \cdot \mathrm{d}\boldsymbol{S}_j$$
 Magnetic flux induced by *i*-th current through *j*-th current

[Wb]

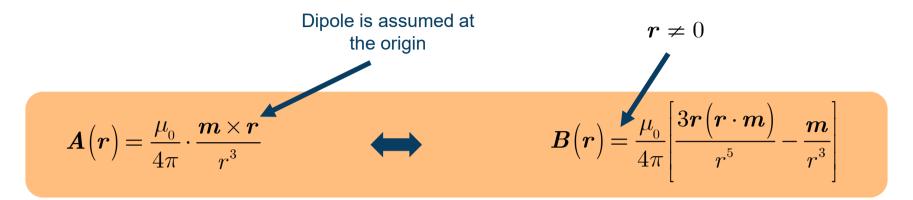
$$M_{ij} = \frac{\Phi_{ji}}{I_{i}}$$

Magnetic Materials

- Material response is due to magnetic dipole moments
- Magnetic moment comes from spin or orbital motion of an electron
- Magnetic field tends to align magnetic moments
- ullet Magnetic field induces magnetic dipoles with density $m{M}m{r}$ $\left[{
 m A \cdot m^{-1}}
 ight]$

Number of dipoles in unitary volume

Magnetic Field of a Dipole



$$\bm{m} = \frac{1}{2} \int_V \bm{r} \times \bm{J} \Big(\bm{r} \Big) \mathrm{d}\, V$$
 Magnetic dipole moment
$$\Big[\mathbf{A} \cdot \mathbf{m}^2 \Big]$$

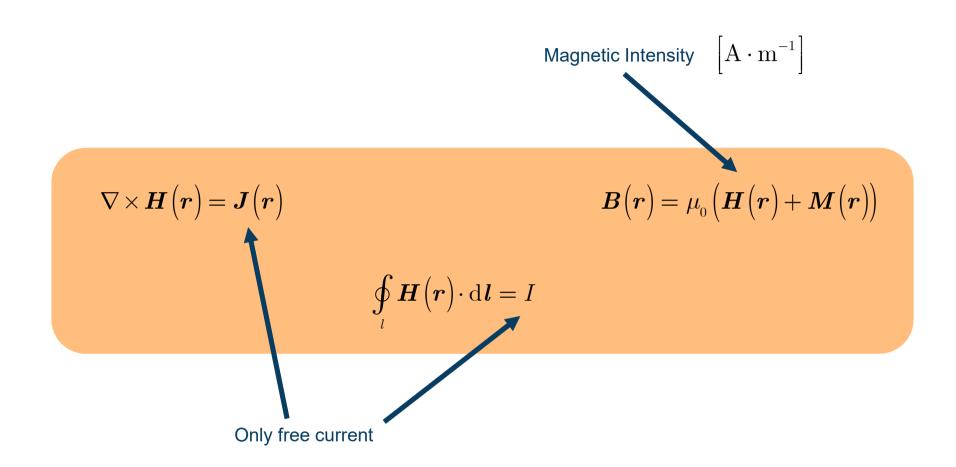
Magnetic dipole approximates infinitesimally small current loop

Field Produced by Magnetized Matter

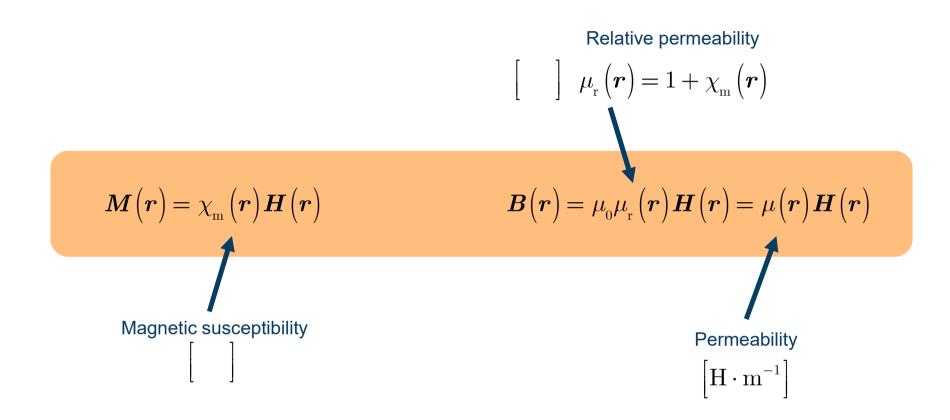
$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int_{V'} \frac{\boldsymbol{M}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{\left|\boldsymbol{r} - \boldsymbol{r}'\right|^3} \mathrm{d}\,V' = \frac{\mu_0}{4\pi} \oint_{S'} \frac{\boldsymbol{M}(\boldsymbol{r}') \times \mathrm{d}\boldsymbol{S}'}{\left|\boldsymbol{r} - \boldsymbol{r}'\right|} + \frac{\mu_0}{4\pi} \int_{V'} \frac{\nabla' \times \boldsymbol{M}(\boldsymbol{r}')}{\left|\boldsymbol{r} - \boldsymbol{r}'\right|} \mathrm{d}\,V'$$
Only applies at infinitely sharp boundary (unrealistic)

This formula holds very well outside the matter and, curiously, it also well approximates the field inside

Magnetic Intensity



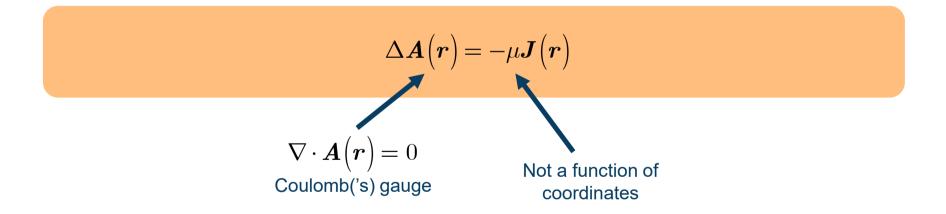
Linear Isotropic Magnetic Materials



All the complicated structure of matter reduces to a simple scalar quantity

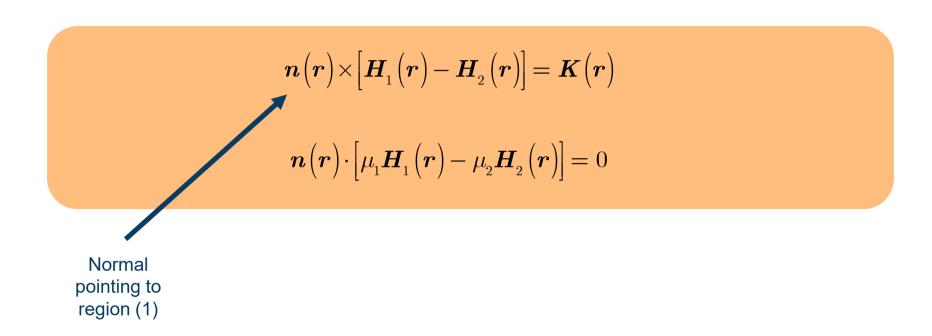
Fields in Presence of Magnetic Material

$$\nabla \cdot \boldsymbol{B}(\boldsymbol{r}) = 0 \Leftrightarrow \boldsymbol{B}(\boldsymbol{r}) = \nabla \times \boldsymbol{A}(\boldsymbol{r}) \qquad \longrightarrow \qquad \nabla \times \left[\frac{1}{\mu(\boldsymbol{r})} \nabla \times \boldsymbol{A}(\boldsymbol{r})\right] = \boldsymbol{J}(\boldsymbol{r})$$



Poisson's equation holds only when permittivity does not depend on coordinates

Magnetic Material Boundaries



Both conditions are needed for unique solution

Magnetostatic Energy in Magnetic Material

$$W = \frac{1}{2\mu_0} \int_V \left| \boldsymbol{B}(\boldsymbol{r}) \right|^2 dV \qquad \qquad W = \frac{1}{2} \int_V \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{B}(\boldsymbol{r}) dV$$

Magnetic Materials

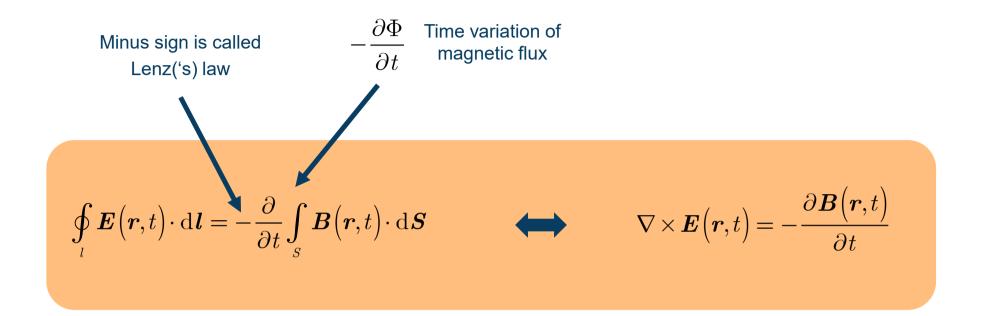
- Paramagnetic small positive susceptibility (small attraction – linear)
- Diamagnetic small negative susceptibility (small repulsion – linear)
- Ferromagnetic "large positive susceptibility"
 (large attraction nonlinear)

Ferromagnetic Materials

- Spins are ordered within domains
- Magnetization is a non-linear function of field intensity
- Magnetization curve Hysteresis, Remanence
- Susceptibility can only be defined as local approximation
- Above Curie('s) temperature ferromagnetism disappears

Exact calculations are very difficult – use simplified models (soft material, permanent magnet)

Faraday('s) Law

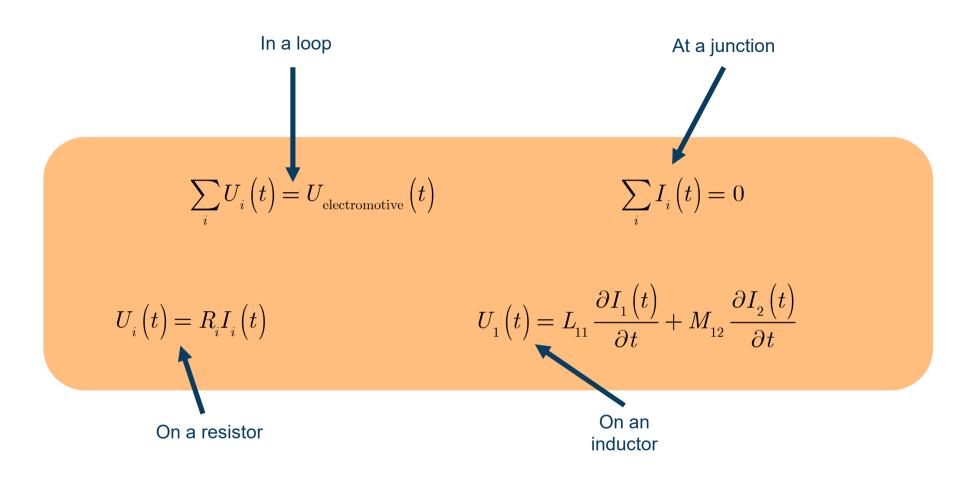


Time variation in magnetic field produces electric field that tries to counter the change in magnetic flux (electromotive force)

Lenz('s) Law

The current created by time variation of magnetic flux is directed so as to oppose the flux creating it.

Time Varying RL Circuits



Circuit laws are valid as long as the variations are not too fast

Time Varying Potentials

Potential calibration

$$\nabla \cdot \boldsymbol{A}(\boldsymbol{r},t) = -\sigma \mu \varphi(\boldsymbol{r},t)$$

$$oldsymbol{B}ig(oldsymbol{r},tig) =
abla imes oldsymbol{A}ig(oldsymbol{r},tig)$$

$$oldsymbol{B}ig(oldsymbol{r},tig) =
abla imes oldsymbol{A}ig(oldsymbol{r},tig) - rac{\partial oldsymbol{A}ig(oldsymbol{r},tig)}{\partial t}$$

In time varying fields scalar potential becomes redundant

Source and Induced Currents

Those are fixed, not reacting to fields

$$abla imes oldsymbol{H}\left(oldsymbol{r},t
ight) = oldsymbol{J}_{ ext{source}}\left(oldsymbol{r},t
ight) + oldsymbol{J}_{ ext{induced}}\left(oldsymbol{r},t
ight) = oldsymbol{J}_{ ext{source}}\left(oldsymbol{r},t
ight) + \sigma oldsymbol{E}\left(oldsymbol{r},t
ight)$$

Diffusion Equation

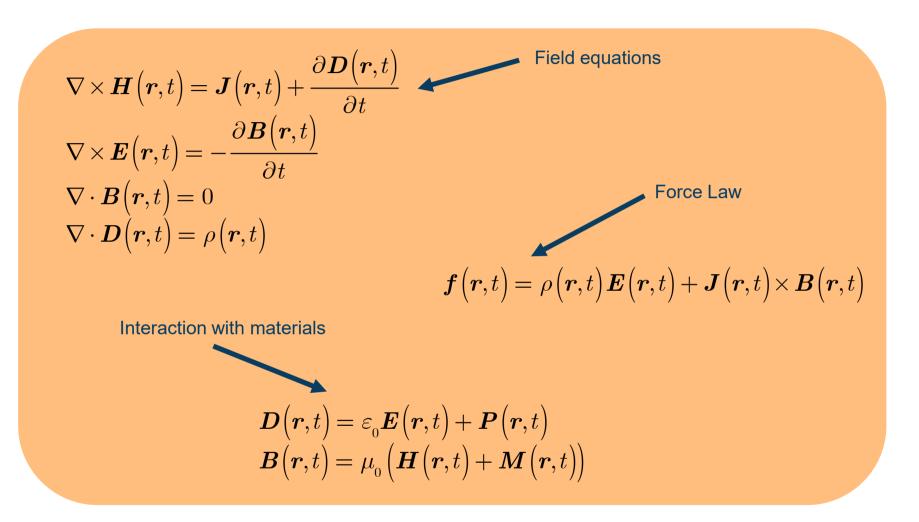
$$\Delta \boldsymbol{A}(\boldsymbol{r},t) - \sigma \mu \frac{\partial \boldsymbol{A}(\boldsymbol{r},t)}{\partial t} = -\mu \boldsymbol{J}_{\text{source}}(\boldsymbol{r},t)$$

$$\Delta \boldsymbol{H}(\boldsymbol{r},t) - \sigma \mu \frac{\partial \boldsymbol{H}(\boldsymbol{r},t)}{\partial t} = -\nabla \times \boldsymbol{J}_{\text{source}}(\boldsymbol{r},t)$$

$$\Delta \boldsymbol{E}(\boldsymbol{r},t) - \sigma \mu \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t} = \frac{1}{\varepsilon} \nabla \rho_{\text{source}}(\boldsymbol{r},t) + \mu \frac{\partial \boldsymbol{J}_{\text{source}}(\boldsymbol{r},t)}{\partial t}$$

Material parameters are assumed independent of coordinates

Maxwell('s) Equations



Absolute majority of things happening around you is described by these equations

Boundary Conditions

$$\begin{split} \boldsymbol{n}\left(\boldsymbol{r}\right) \times \left[\boldsymbol{E}_{1}\left(\boldsymbol{r},t\right) - \boldsymbol{E}_{2}\left(\boldsymbol{r},t\right)\right] &= 0 \\ \boldsymbol{n}\left(\boldsymbol{r}\right) \times \left[\boldsymbol{H}_{1}\left(\boldsymbol{r},t\right) - \boldsymbol{H}_{2}\left(\boldsymbol{r},t\right)\right] &= \boldsymbol{K}\left(\boldsymbol{r},t\right) \\ \boldsymbol{n}\left(\boldsymbol{r}\right) \cdot \left[\boldsymbol{B}_{1}\left(\boldsymbol{r},t\right) - \boldsymbol{B}_{2}\left(\boldsymbol{r},t\right)\right] &= 0 \\ \text{Normal pointing to region (1)} & \boldsymbol{n}\left(\boldsymbol{r}\right) \cdot \left[\boldsymbol{D}_{1}\left(\boldsymbol{r},t\right) - \boldsymbol{D}_{2}\left(\boldsymbol{r},t\right)\right] &= \sigma\left(\boldsymbol{r},t\right) \end{split}$$

Electromagnetic Potentials

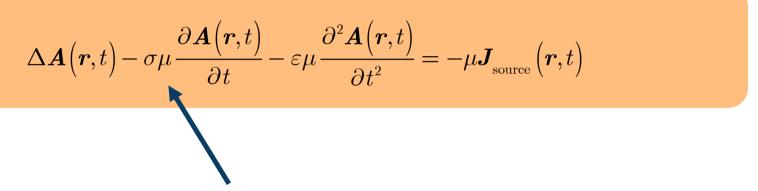
Lorentz('s) calibration

$$\nabla \cdot \boldsymbol{A} \Big(\boldsymbol{r}, t \Big) = -\sigma \mu \varphi \Big(\boldsymbol{r}, t \Big) - \varepsilon \mu \frac{\partial \varphi \Big(\boldsymbol{r}, t \Big)}{\partial t}$$

$$m{B}m{(r,t)} =
abla imes m{A}m{(r,t)}$$

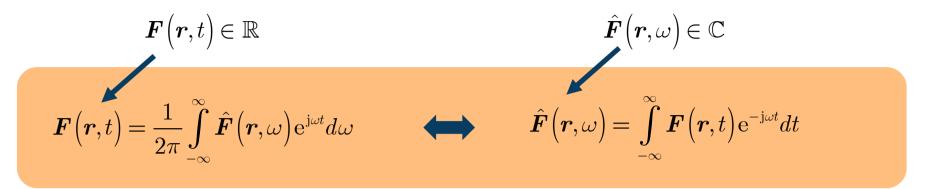
$$oldsymbol{B}ig(oldsymbol{r},tig) =
abla imes oldsymbol{A}ig(oldsymbol{r},tig) = -
abla arphiig(oldsymbol{r},tig) - rac{\partial oldsymbol{A}ig(oldsymbol{r},tig)}{\partial t}$$

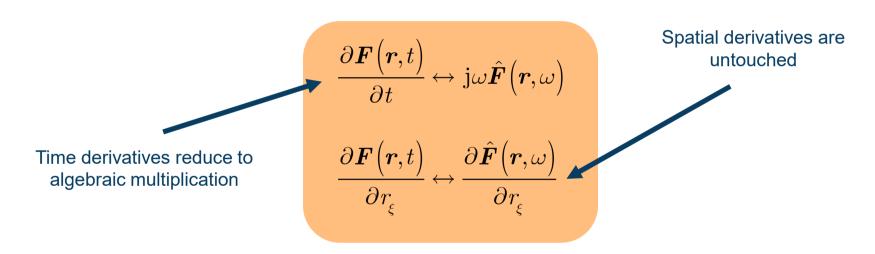
Wave Equation



Material parameters are assumed independent of coordinates

Frequency Domain





Frequency domain helps us to remove explicit time derivatives

Phasors

$$\hat{\boldsymbol{F}}(\boldsymbol{r}, -\omega) = \hat{\boldsymbol{F}}^*(\boldsymbol{r}, \omega) \qquad \qquad \boldsymbol{F}(\boldsymbol{r}, t) = \frac{1}{\pi} \int_0^\infty \operatorname{Re}\left[\hat{\boldsymbol{F}}(\boldsymbol{r}, \omega) e^{j\omega t}\right] d\omega$$

Reduced frequency domain representation

Maxwell('s) Equations – Frequency Domain

$$\nabla \times \hat{\boldsymbol{H}}(\boldsymbol{r},\omega) = \hat{\boldsymbol{J}}(\boldsymbol{r},\omega) + j\omega\varepsilon\hat{\boldsymbol{E}}(\boldsymbol{r},\omega)$$

$$\nabla \times \hat{\boldsymbol{E}}(\boldsymbol{r},\omega) = -j\omega\mu\hat{\boldsymbol{H}}(\boldsymbol{r},\omega)$$

$$\nabla \cdot \hat{\boldsymbol{H}}(\boldsymbol{r}, \omega) = 0$$

$$\nabla \cdot \hat{\boldsymbol{E}}(\boldsymbol{r},\omega) = \frac{\hat{\rho}(\boldsymbol{r},\omega)}{\varepsilon}$$

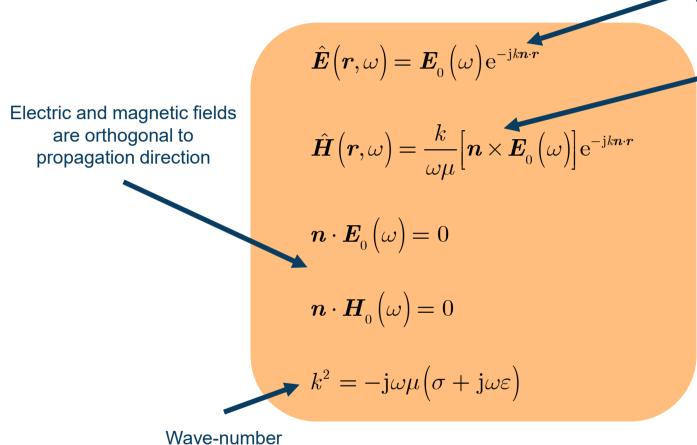
We assume linearity of material relations

Wave Equation – Frequency Domain

$$\Delta \hat{\boldsymbol{A}}(\boldsymbol{r},\omega) - j\omega\mu(\sigma + j\omega\varepsilon)\hat{\boldsymbol{A}}(\boldsymbol{r},\omega) = -\mu\hat{\boldsymbol{J}}_{\text{source}}(\boldsymbol{r},\omega)$$

Helmholtz('s) equation

Plane Wave



Unitary vector representing the direction of propagation

Electric and magnetic fields are mutually orthogonal

The simplest wave solution of Maxwell('s) equations

Plane Wave Characteristics

$$k = \sqrt{-j\omega\mu(\sigma + j\omega\varepsilon)}$$

$$\operatorname{Re}[k] > 0; \operatorname{Im}[k] < 0$$

$$\operatorname{Re}[k] > 0; \operatorname{Im}[k] < 0$$

$$\lambda = \frac{2\pi}{\operatorname{Re}[k]}$$

$$v_{\rm f} = \frac{\omega}{{\rm Re}\big[k\big]}$$

$$Z = \frac{\omega \mu}{k}$$

$$\delta = -\frac{1}{\mathrm{Im}[k]}$$

General isotropic material

$$k = \frac{\omega}{c_0}$$

$$\operatorname{Re}[k] > 0; \operatorname{Im}[k] = 0$$

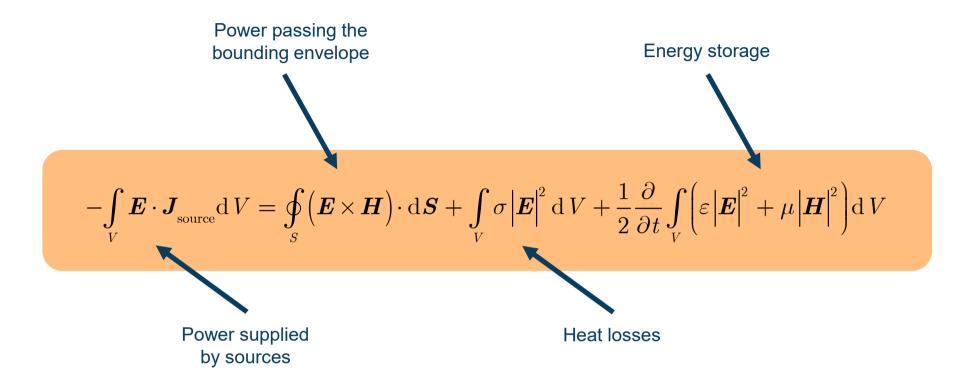
$$\lambda = \frac{c_0}{f}$$

$$v_{\rm f} = c_{\rm 0}$$

$$Z = c_{\scriptscriptstyle 0} \mu_{\scriptscriptstyle 0} = \sqrt{\frac{\mu_{\scriptscriptstyle 0}}{\varepsilon_{\scriptscriptstyle 0}}} \approx 377~\Omega$$

$$\delta \to \infty$$

Poynting('s)-Umov('s) Theorem



Energy balance in an electromagnetic system

Heat Balance in Time-Harmonic Steady State

Valid for general periodic steady state

$$-\int_{V} \langle \boldsymbol{E} \cdot \boldsymbol{J}_{\text{source}} \rangle dV = \oint_{S} \langle \boldsymbol{E} \times \boldsymbol{H} \rangle \cdot d\boldsymbol{S} + \int_{V} \langle \sigma \left| \boldsymbol{E} \right|^{2} \rangle dV$$
$$-\frac{1}{2} \int_{V} \text{Re} \left[\hat{\boldsymbol{E}} \cdot \hat{\boldsymbol{J}}_{\text{source}}^{*} \right] dV = \frac{1}{2} \oint_{S} \text{Re} \left[\hat{\boldsymbol{E}} \times \hat{\boldsymbol{H}}^{*} \right] \cdot d\boldsymbol{S} + \frac{1}{2} \int_{V} \sigma \left| \hat{\boldsymbol{E}} \right|^{2} dV$$

Valid for time-harmonic steady state

Cycle Mean Power Density of a Plane Wave

Power propagation coincides with phase propagation

$$\left\langle oldsymbol{E}ig(oldsymbol{r},tig) imesoldsymbol{H}ig(oldsymbol{r},tig)
ight
angle =rac{1}{2}rac{\mathrm{Re}ig[kig]}{\omega\mu}ig|oldsymbol{E}_{\scriptscriptstyle 0}ig(\omegaig)ig|^2\mathrm{e}^{2\,\mathrm{Im}[k]oldsymbol{n}\cdotoldsymbol{r}}oldsymbol{n}$$

Linear Momentum Carried by Fields

Volume integration considerably change the meaning of Poynting('s) vector

$$oldsymbol{p} = rac{1}{c_0^2} \int\limits_V \left(oldsymbol{E} imes oldsymbol{H}
ight) \mathrm{d}\,V$$

This formula is only valid in vacuum. In material media things are more tricky.

Angular Momentum Carried by Fields

$$oldsymbol{L} = rac{1}{c_0^2} \int_V oldsymbol{r} imes \left(oldsymbol{E} imes oldsymbol{H}
ight) \mathrm{d}\,V$$

This formula is only valid in vacuum. In material media things are more tricky.

Lukas Jelinek

lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic

Ver. 2015/12/16

