Linear Classifier – Perceptron Algorithm

December 2, 2014

Finding linear classifier with zero *training* error is simply modeled as a problem of solving system of linear inequalities:

Let \mathbf{x}_i be the *i*-th sample from the feature space and y_i its class indicator:

 $\mathbf{w}\mathbf{x}_i + b \ge 0, \forall i : y_i = 1, \\ \mathbf{w}\mathbf{x}_i + b < 0, \forall i : y_i = 2, \end{cases}$

After a simple data transformation

$$\mathbf{v} = [\mathbf{w}, b],$$
$$\mathbf{x}_{i}^{*} = [\mathbf{x}_{i}, 1], \forall i : y_{i} = 1,$$
$$\mathbf{x}_{i}^{*} = -[\mathbf{x}_{i}, 1], \forall i : y_{i} = 2,$$

we can solve the problem with respect to one condition only $\mathbf{vx}_i^* > 0, \forall i = 1 \dots N$, using following algorithm:

Data: $\{\mathbf{x}_i^*\}_{i=1}^N$ transformed data samples Result: \mathbf{v} weights of the classifier begin $| \mathbf{v} \leftarrow 0;$ while $\exists \mathbf{x}_i : \mathbf{v} \mathbf{x}_i^* \leq 0$ do $| \mathbf{v} \leftarrow \mathbf{v} + \mathbf{x}_i^*;$ end

end