X-Rays

Jan Kybic

2005-2014

Overview

- Fundamentals of X-rays
- Generation of X-rays
- Detection of X-rays
- Imaging and diagnostic methods

Invention

1895, W. Röntgen

B. Röntgen hand

modern hand

Electromagnetic spectrum

Energy (eV)	Frequency (Hz)		Wavelength (m)
4×10^{-11}	104		104
4×10^{-10}	105	AM radio waves	
4×10^{-9}	106		
4×10^{-8}	107	Short radio waves	
		FM radio waves and TV	
4×10^{-7}	108		100
4×10^{-6}	109		10-1
4×10^{-5}	1010	Microwaves and radar	10-2
4×10^{-4}	1011		10-3
4×10^{-3}	1012	Infrared light	10-4
4×10^{-2}	1013	e e	10-5
4×10^{-1}	1014	Visible light	10-6
4×10^{0}	1015	Ultraviolet light	10-7
4×10^{1}	1016	e	10-8
4×10^{2}	1017		10-9
4×10^{3}	1018	X-ray	10-10
4×10^4	1019	•	10-11
4×10^{5}	1020		10-12
4×10^{6}	10 ²¹	Gamma ray	10-13
4×10^{7}	1022	Cosmic ray	10-14

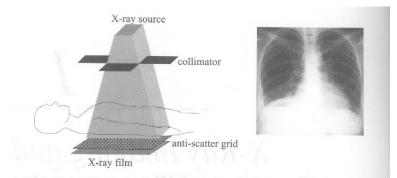
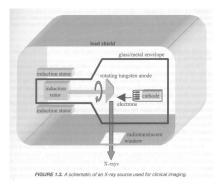
Particles and waves

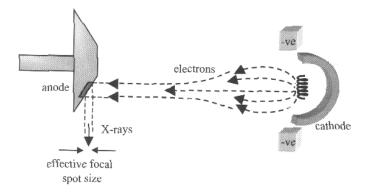
- reflection, scattering, refraction, diffraction
- ▶ photons with energy E = hf, $\lambda = 1 \text{ nm} \approx 1.2 \cdot 10^3 \text{ eV} = 1.2 \text{ keV}$
- ionizing radiation (above 1 eV)

Chest X-rays radiography machine

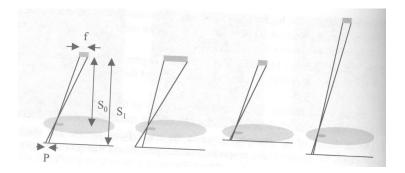
Chest X-ray

X-ray scanner

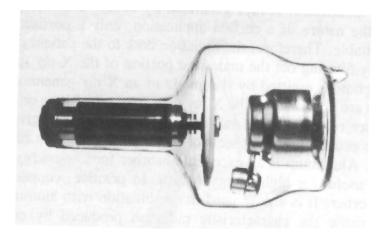




FIGURE 1.1. (Left) The basic setup for X-ray imaging. The collimator restricts the beam of X-rays so as to irradiate only the region of interest. The antiscatter grid increases tissue contrast by reducing the number of detected X-rays that have been scattered by tissue. (Right) A typical planar X-ray radiograph of the chest, in which the highly attenuating regions of bone appear white.

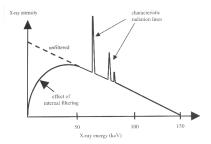
X-ray source


- $\blacktriangleright~15\sim150\,\text{kV},$ rectified AC
- 50 \sim 400 mA anode current
- tungsten wire (200 μ m) cathode, heated to \sim 2200°C
- anode rotates at 3000 rpm
- molybdenum or thungsten-rhenium anode
- thermoionic emission

Beam focusing


• Focal spot size 0.3 mm \sim 1.2 mm

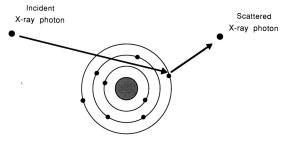
Penumbra


- geometric unsharpness
- small focal spot
- large distance

X-ray tube

X-ray parameters

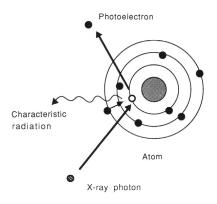
Intensity: $[W/m^2]$: $\propto U^2 I$ Spectrum: (150 kV)



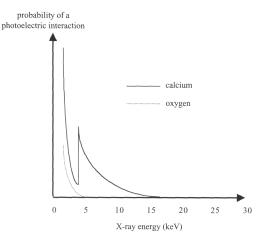
- Bremsstrahlung
- Characteristic radiation
- ► Filter low-energy rays that would not penetrate the patient Al sheets. (skin dose reduced 80×)

Interaction between X-rays and matter

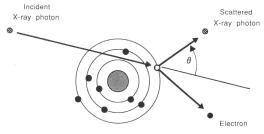
- Coherent scattering
- Photoelectric effect
- Compton scattering
- (Pair production)
- (Photodisintegration)


Coherent (Rayleigh) scattering

Atom


- Photon \longrightarrow photon
- Low-energy radiation
- Probability $\propto Z_{\rm eff}^{8/3}/E^2$.
 - Z_{eff} effective atomic number
 - muscle $Z_{\rm eff} \approx 7.4$, bone $Z_{\rm eff} \approx 20$
- About 5 \sim 10 % of tissue interactions

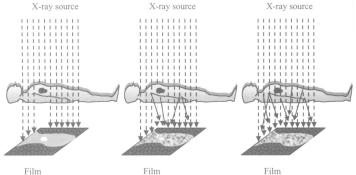
Photoelectric effect


- High-energy radiation
- Photon —> characteristic radiation, photo-electron / Auger electron, positive ion
- $\blacktriangleright \longrightarrow ionization$
- Desirable, X-ray photon completely absorbed

Photoelectric interaction wrt E

- K-edge
- Probability $\propto Z_{\rm eff}^3/E^3$ (above K-edge)
- Excellent contrast bone/tissue at low E

Compton scattering



Atom

$$E_{ ext{scatt}} = rac{E_{ ext{inc}}}{1 + rac{E_{ ext{inc}}}{m_e c^2} ig(1 - \cos hetaig)}$$

- ▶ photon → photon + electron, ionization
- most frequent in X-ray imaging, especially for high E_{inc}
- \blacktriangleright independent to atomic number \longrightarrow small contrast
- background noise, health hazard

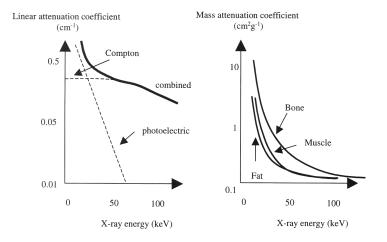
Effects of Compton scattering

Film

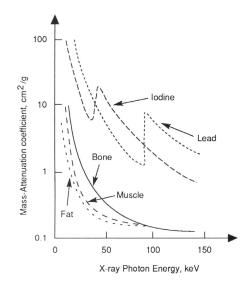
Attenuation

 $dI = -n\sigma I dx$ $I_x = I_0 e^{-\mu x}$

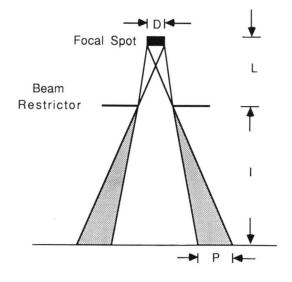
 μ — linear attenuation coefficient Half-value layer pprox 0.693/ μ

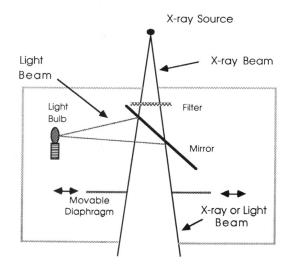

TABLE 1.2. The Half-Value Layer (HVL) for Muscle and Bone as a Function of the Energy of the Incident X-Rays

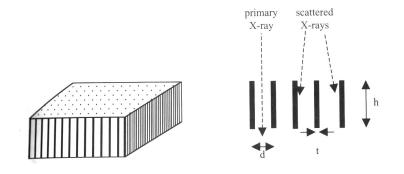
X-ray energy (keV)	HVL, muscle (cm)	HVL, bone (cm)
30	1.8	0.4
50	3.0	1.2
100	3.9	2.3
150	4.5	2.8


Mass attenuation coefficient μ/ρ

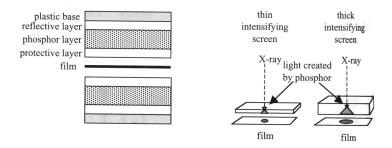
Attenuation factors wrt E




Attenuation wrt E(2)

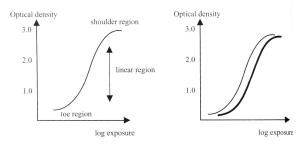

Beam restrictor / Collimator

Beam restrictor / Collimator (2)



Antiscatter grid

Bucky factor = efficiency


Intensifier screen

- ▶ 50× sensitivity increase
- thickness; trade-off resolution/sensitivity
- Gd green, La blue
- efficiency 20 %

Film

- monochromatic (sensitive to blue), ortochromatic (sens. to green)
- double emulsion (10 μm), silver bromide in gelatin
- blackening, optical density (OD) $\log_{10}(I_i/I_t)$
- contrast $\gamma = \frac{OD_2 OD_1}{\log_{10} E_2 \log_{10} E_1}$, slope of the linear region
- latitude (dynamic range), range of useful exposure values
- grain size sensitivity/resolution trade-off
- mixed-particle size \longrightarrow high contrast
- automatic exposure control, ionization chamber

Digital Sensors

Computed radiography (CR)

- Phosphor-based storage plate
- chemical storage (oxidation of Eu)
- laser scanning, light erasure

Digital Sensors

- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - flat-panel detectors (FPD)
 - thin-film transistor (TFT) array
 - ► Csl scintillator → photo-diode/transistor
 - ▶ 41 × 41 cm, 2048 × 2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film

Digital Sensors

- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - flat-panel detectors (FPD)
 - thin-film transistor (TFT) array
 - ► Csl scintillator → photo-diode/transistor
 - 41×41 cm, 2048×2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film
- Charge coupled device (CCD)
 - Phosphor screen, fiber-optic cables, CCD sensor
 - good sensitivity, low noise

X-ray image characteristics

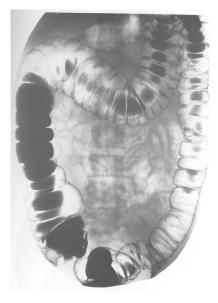
Signal-to-noise ratio (SNR)

- Quantum mottle, source variation, Poisson distribution,
- SNR $\propto \sqrt{N}$, N intensity / photons per area
- exposure time and current, SNR $\propto \sqrt{TI}$
- ▶ higher $U \longrightarrow$ more high-energy rays \longrightarrow more incident photons \longrightarrow better SNR
- $\blacktriangleright \text{ X-ray filtering } \longrightarrow \text{ smaller SNR}$
- patient size, antiscatter grid, intensifying screen, film

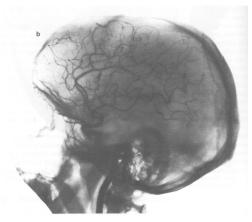
X-ray image characteristics

Signal-to-noise ratio (SNR)

- Spatial resolution
 - point spread function (PSF), line spread function (LSF), edge spread function (ESF), modulation transfer function (MTF)
 - thickness of the intensifier screen
 - speed of the X-ray film
 - geometric unsharpness
 - ▶ magnification factor (patient → film). Place patient as close as possible.


X-ray image characteristics

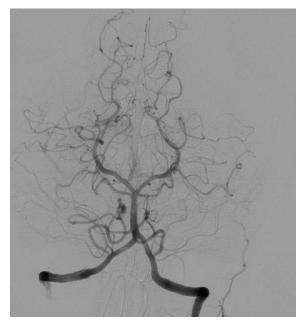
- Signal-to-noise ratio (SNR)
- Spatial resolution
- Contrast-to-noise ratio


•
$$CNR = \frac{|S_A - S_B|}{\sigma_N} = |SNR_A - SNR_B|$$

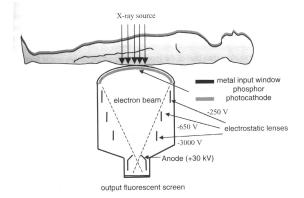
X-ray contrast agents

barium sulfate, gastrointestinal tract

X-ray angiography

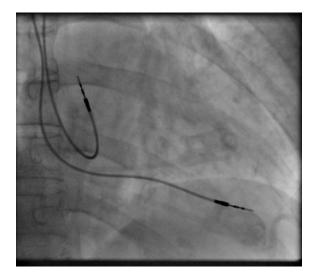


- Stenosis, clotting of arteries
- Iodine-based contrast agent
- Time series

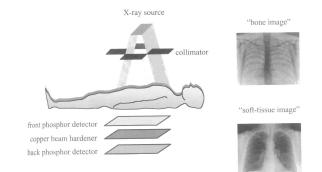

X-ray angiography

- Stenosis, clotting of arteries
- Iodine-based contrast agent
- Time series
- Excellent resolution (100 µm)
- Digital subtraction angiography (DSA)
- Registration needed

DSA example

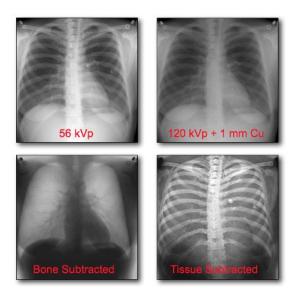


Fluoroscopy / Intra-operative imaging



▶ Now a FPD/CCD instead of the fluorescent screen.

Fluoroscopy example



Dual-Energy Imaging

- Two exposures
- Two detectors
- Beam hardening

Dual-energy example

Mamography

- low U (25 \sim 30 kV), filter high-energy rays
- digital mamography, CCD sensor (1024 imes 1024 pixels)

X-ray Advantages / disadvantages

Advantages

- Widely used and available
- Experts available
- High-spatial resolution
- Excelent imaging of hard tissues (bones)
- Disadvantages
 - Radiation exposure
 - Difficulty in imaging soft-tissues
 - 2D projection, hidden parts

New trends

- FPD/CCD sensors replace film
- higher sensitivity, faster exposure, lower dose
- dynamic imaging
- CT