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Lecture: Multi-modal Image Registration
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1. Image Registration in Medicine

� Registration – a problem common to many tasks in medical imaging:
align two or more images. Images can be two dimensional or three dimensional.

� Aspects of registration:

• measured object: intra patient – inter individual (e.g. atlas)

• measuring device: single modality – multi-modal (CT-MRT, MRT-PET,. . . )

• Transformation: rigid body, affine transformation – smooth but non-linear
transformation.
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2. Simple case: single patient, single modality

A. Simplest case We start with the simplest variant: register two images of the same
patient acquired with the same sensor:

Images: u, u′, defined on domains D, D′ respectively, where

- D,D′ ⊂ Z2 (Z3)

- u(r) denotes the image value at pixel (voxel) r.
Task (informal): Find the best alignment of the images.

Task (formal): Find the rotation matrix R and the translation vector t which minimise the
sum of squared differences

(R∗, t ∗) = argmin
R,t

1

|A|
∑
r∈A

[
u(r)− u′

(
R r + t

)]2
where A denotes the subset of matched voxels A =

{
r ∈ D | R r + t ∈ D′

}
.
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2. Simple case: single patient, single modality

Problems:

� Points r ′ = R r + t have non-integer coordinates. Image values u′(r ′)?

� Criterion depends on the matching region A.

Algorithms:

Here we consider only translations t (for the sake of simplicity)

� Complete enumeration of all possible (integer valued) translations t.

� If: image is a “smooth“ function and the translation is small as compared with the
characteristic length of variation of image values – approximation by Taylor series

u′(r + t) ≈ u′(r) +∇u′(r) · t

The optimisation problem reads

t ∗ = argmin
t

1

|A|
∑
r∈A

[
u(r)− u′

(
r)−∇u′(r) · t

]2
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2. Simple case: single patient, single modality

Let us ignore that A depends on the translation t.

F (t) =
∑
r∈A

[
u(r)− u′

(
r)−∇u′(r) · t

]2
→ min

t

F (t) =
∑
r∈A

[
a(r)− b(r) · t

]2
→ min

t

Find the minimiser by setting the derivative w.r.t. t to zero

∂

∂t
F (t) = 2

∑
r∈A

[
a(r)− b(r) · t

]
b(r) = 0

We get
C t− d = 0 ⇒ t∗ = C−1 d

where
d =

∑
r∈A

a(r)b(r) and C =
∑
r∈A

b(r)⊗ b(r)
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3. Transformations and image interpolation

Transformation of pixel (voxel) coordinates
r ′ = T (r). In coordinates:

x′ =Tx(x, y)

y′ =Ty(x, y)

� Affine transform in R2 is given by r ′ = A r + t, where: t – translation vector, A – 2x2
matrix with non-zero determinant.

� General non-linear transform in R2

x′ =f(x, y) = x+ f̃(x, y)

y′ =h(x, y) = y + h̃(x, y)

where f , h are general non-linear functions s.t. the Jacobian has everywhere non-zero
determinant.
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3. Transformations and image interpolation

The point r = (x, y) has non-integer coordinates. Which image value u(r) should be
assigned?
� The point (x, y) is assigned the value of u at the nearest point in the discrete raster.

u(x, y) = u(round (x), round (y))

� Linearly combine image values of the 4 neighbouring points

u(x, y) = (1− a) (1− b)u(l, k) + a (1− b)u(l + 1, k)+

b (1− a)u(l, k + 1) + a b u(l + 1, k + 1)

where

l = bxc, a = x− l ,
k = byc, b = y − k .
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4. Multi-modal image registration

� Images u, v defined on domains D, D′ are captured by different sensors.
� Mean square difference error is not applicable in this case.

Idea: consider the joint histogram of u and the transformed image v.
� Images well registered: image values of u and v correlated
� Images not well registered: image values of u and v statistically independent

Let v̂(r) = v
(
T (r)

)
denote the transformed image v.

Define the histograms

puv̂(k, k
′) =

1

|A|

∣∣∣{r ∈ A | u(r) = k, v̂(r) = k′
}∣∣∣

pu(k) =
1

|A|

∣∣∣{r ∈ A | u(r) = k
}∣∣∣

Mutual information
I(u, v̂) =

∑
k,k′∈G

puv̂(k, k
′) log

puv̂(k, k
′)

pu(k)pv̂(k′)

We expect I(u, v̂) to be maximal for the true transformation T ∗.
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4. Multi-modal image registration

Let us understand this:

� Let p(x), q(x), x = 1, . . . , n be two discrete probability distributions

� Kullback-Leibler divergence

D(p, q) =

n∑
x=1

p(x) log
p(x)

q(x)

has property D(p, q) > 0 and D(p, q) = 0⇔ p(x) = q(x) ∀i

� In our case: p⇒ puv̂(k, k
′) and q ⇒ pu(k)pv̂(k

′).
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4. Multi-modal image registration

Examples:

� X,Y are two independent random discrete random variables: p(x, y) = p(x)p(y).
Hence

I(X,Y ) =

n∑
x,y=1

p(x, y) log
p(x, y)

p(x)p(y)
=

n∑
x,y=1

p(x)p(y) log 1 = 0

� X,Y are both uniform, i.e. p(x) ≡ p(y) ≡ 1
n, but strongly correlated,

e.g. p(x, y) = 1
nδxy. Then

I(X,Y ) =

n∑
x,y=1

p(x, y) log
p(x, y)

p(x)p(y)

n∑
x,y=1

1

n
δxy log

n2

n
δxy = log n
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Multi-Modal Registration

source target registered source

(Examples from: S. Periaswamy, H. Farid, Elastic Registration with Partial Data, 2003.)

Discussion:

� Why mutual information?

� Criterion still depends on the matching region A.

� Better results can be obtained if a (probabilistic) anatomical atlas is available.
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