Medical Imaging Magnetic Resonance Imaging, Medical Applications (Outline of Lecture 4)

A. Static Scenes

- Brain imaging
- Tumor diagnosis
- Musculosceletal system

Spin echo imaging (see lecture 2) can be applied \Rightarrow T_1 - and T_2 - weighted images

$$I(x,y) = \rho(x,y) \left[1 - \exp^{-T_R/T_1(x,y)} \right] \exp^{-T_E/T_2(x,y)}$$

MRI contrast agents can be used to increase the contrast between healthy and diseased tissue:

Paramagnetic agents:

- "Caged" metal ions like Gd^{3+} with high magnetic moment
- Interaction between the unpaired electrons and water molecules shortens the proton T_1 relaxation time.
- Often used in the diagnosis of brain disorders.

Ferromagnetic agents

- Ferromagnetic crystals like Fe_2O_3 and Fe_3O_4 mixture coated in a polymer matrix
- Shorten the proton T_2 relaxation time.
- Accumulate primarily in healthy rather then pathological tissue.

р

m

4/9

B. Non-static Scenes

- Lung and liver imaging
- Real time heart imaging
- Swallowing and snoring,

Fast imaging needed! If possible, apply motion compensation using e.g. a respiratory sensor.

- (1) Rapid gradient-echo imaging + 3D imaging
 - Omit π -pulse for refocusing and long TR-delay for T_1 relaxation.
 - Omit slice selection.
 - Use two gradients for phase encoding.

Total transverse magnetization is

$$M_T(t) = e^{-i\gamma B_0 t} \iiint dx dy dz M_T(x, y, 0) \exp\left[-i\left(k_x(t)x + k_y(t)y + k_z(t)z\right)\right]$$

- (2) Echo-Planar Imaging
 - Omit π -pulse for refocusing and long TR-delay for T_1 relaxation.
 - Use a single $\pi/2$ -pulse followed by full k-space sampling.

C

m p

7/9

C. Imaging flows

Angiography

- Shorten the effective T_1 for blood.
- Time of flight angiography: Apply $\pi/2$ and π -pulses with different frequencies.
- Phase contrast angiography: Induce phase shifts in the precessing magnetization of flowing blood.
- Contrast enhancement: Shorten T_1 relaxation time of blood by application of contrast agents.

D. Diffusion Imaging

Bloch equation for the transverse magnetisation in presence of (anisotropic) diffusion:

$$\dot{M}_T = -i\gamma \left[B_0 + \vec{g}(t) \cdot \vec{r} \right] M_T + \nabla (D\nabla M_T)$$

where D denotes the diffusion tensor. This gives

$$M_T(t) = M_T(0) \exp\left[-i\vec{k}(t)\cdot\vec{r}\right] \exp\left[-\int_0^t \vec{k}(t')\cdot D\cdot\vec{k}(t')dt'\right]$$

