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Snake principles

I Initial curve (manual)

I Curve evolves using image data

I . . . until finds desired boundary

I Criterion = image term + smoothness (internal) term +
shape term

(show animate heart.gif, ventricles movie.gif)



Traditional snakes
Curve is parameterized as v(s) = [x(s), y(s)] with s ∈ [0, 1]

4

3
4 5

2
1

4
ϕ

s

x

y

l(x ,y )

x

y

(x (s),y (s))1

11

1

(a) (b)

Minimize energy

E ∗
snake =

∫ 1

0
Esnake

(
v(s)

)
ds

=

∫ 1

0

(
Eint

(
v(s)

)
+ Eimage

(
v(s)

)
+ Econ

(
v(s)

))
ds ,



Internal energy term

Eint = α

∣∣∣∣dv

ds

∣∣∣∣2 + β

∣∣∣∣d2v

ds2

∣∣∣∣2 ,

α, β specify elasticity and stiffness. Can depend on s.



Image energy term

Eimage = wline Eline + wedge Eedge

I Line functional attracts to white/black parts

Eline = ±f (x , y)

I Edge functional attracts to strong edges

Eedge = −
∣∣∇f (x , y)

∣∣2
smooth/denoise before/after taking the gradient

I Other application-dependent image energy terms.

Shape term — prefer likely shapes.



Euler-Lagrange equations

E ∗
snake =

∫ 1

0
Esnake

(
v(s), v′(s)

)
ds =

∫ 1

0
Esnake

(
v, vs

)
ds

For optimal v(s) it must hold

d
ds

Evs − Ev = 0

Substituting for Eint in Esnake = Eint + Eimage:

− d
ds

(
α(s)

dv

ds

)
+

d2

ds2

(
β(s)

d2v

ds2

)
+∇Eext

(
v(s)

)
= 0

Supposing constant α, β

−α
d2v

ds2
+ β

d4v

ds4
+∇Eext

(
v(s)

)
︸ ︷︷ ︸

fE

= 0

where fE is an external force



Solving EL equations

Euler-Lagrange equation for v(s)

−α
d2v

ds2
+ β

d4v

ds4
+ κfE = 0

Gradient descent — time evolution converges to a solution

∂v

∂t
= α

∂2v

∂s2
− β

∂4v

∂s4
+ κ fE



Balloon force

What to do, when no image information is available? Grow/shrink.

∂v

∂t
= α

∂2v

∂s2
− β

∂4v

∂s4
+ κ fE + λ fB

Balloon force fB perpendicular to the snake curve.



Discretization and implementation

I Unit time steps ∆t = 1

I Snake is represented by two vectors containing the x and y
coordinates of a sequence of points on the snake curve.

I Distance between subsequent points is maintained close to 1
pixel.

I Resample if needed.

I Snake is supposed to be closed and non-intersecting.

I Derivatives approximated by discrete convolution

α
∂2v

∂s2
− β

∂4v

∂s4

∣∣∣∣
s=si

≈ h ∗
[
x(si )
y(si )

]
.

I Stop when area no longer changes.
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Snake example 1
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MRI image Energy result

Energy = smoothed image
α = 0.1, β = 0.01, κ = 0.2, λ = 0.05.
Growing balloon force.



Snake example 2
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MRI image Energy result

Energy = image converted to grayscale, thresholded, smoothed.
α = 0.1, β = 0.1, κ = 0.3, λ = −0.05
Shrinking balloon force.



Gradient vector flow (GVF) snakes

(Xu and Prince)

I Image gives information close to edges

I No information in flat region

I An edge map f is high where we want the snake to be
attracted, i.e. fE = ∇f

I GVF provides a smooth interpolation g = (u, v) everywhere
from f

I Alternative to balloon force, less parameter tuning.



GVF field
Minimize∫∫

µ
(
u2
x + u2

y + v2
x + v2

y

)
+ ‖∇f ‖2 ‖g −∇f ‖2 dx dy



GVF minimization∫∫
µ

(
u2
x + u2

y + v2
x + v2

y

)
+ ‖∇f ‖2 ‖g −∇f ‖2 dx dy

At minimum, Euler-Lagrange equations must hold

µ∆u −
(
u − fx

) (
f 2
x + f 2

y

)
= 0 ,

µ∆v −
(
v − fy

) (
f 2
x + f 2

y

)
= 0 ,

Solved by gradient descent / time evolution:

ut(x , y , t) = µ∆u(x , y , t)−
(
u(x , y , t)− fx(x , y)

) (
fx(x , y)2 + fy (x , y)2

)
,

vt(x , y , t) = µ∆v(x , y , t)−
(
v(x , y , t)− fy (x , y)

) (
fx(x , y)2 + fy (x , y)2

)
.

I Equations are discretized and solved by numeric integration
with a fixed time step on a uniform grid.

I Multiresolution needed for speed and robustness.



GVF example
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Lung slice Energy result

Energy = thresholded smoothed edge map E = ‖∇Gσ ∗ f ‖
No balloon force needed.


