Image registration

Jan Kybic

2010-2013

Image registration

Image registration

(Biomedical) applications

... of image registration

- Comparing images
- Different times
- Different methods
- Different subjects
- Analyzing sequences
- Motion estimation
- Segmentation

Qualitative and quantitative information.

Other applications of image registration

- video stabilization
- video compression
- image mosaicking
- stereo matching
- structure from motion

Motion analysis example

- heart ultrasound sequence (2C,4C)

$$
\text { mplayer -fs -loop } 10
$$

Registration example

EPI MRI

anatomical MRI

Image alignment

Image alignment

warped

Correspondence function

Reference image
Test image

Correspondence function

Reference image
Test image

$$
\mathbf{g}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]^{T}
$$

Deformation field

Deformation field

25 \% deformation

Deformation field

50% deformation

Deformation field

75 \% deformation

Deformation field

Image warping

0 \% deformation

Image warping

25 \% deformation

Image warping

50 \% deformation

Image warping

75 \% deformation

Image warping

100 \% deformation

Classification of registration methods

- Feature space - intermediate data extracted from image
- Search space - representation of the deformation
- Similarity metric - measuring the dissimilarity
- Search strategy - how to find the minimum
- User interaction level

Registration methods - Feature space

Registration methods - Search space

- Local
- Variational
- PDE
- Semi-local
- (Quad)tree
- B-splines
- Wavelets
- Global
- linear
- polynomial
- harmonic
- RBF, krigging
- Image dependent models (e.g. adaptive quadtrees)

Similarity metrics

- Data term for pixel based criteria
- I_{2} norm (SSD)
- I 1 norm
- correlation, normalized correlation
- mutual information, normalized mutual information
- Other data terms
- image interpolation - important
- feature-based methods - distance
- template-based methods - windowed pixel-based criteria
- transform-based methods - norm in the transform domain
- preprocessing - filtering, histogram equalization,...
- Regularization
- Norm (I_{p}) of the derivatives
- Implicit regularization (constrained model)
- Smoothing

Search strategy

- Direct solution
- Exhaustive search
- Dynamic programming
- PDE evolution
- Multidimensional optimisation
- gradient descent
- Newton-like methods, exact/estimated Hessian, Marquardt-Levenberg, conjugated gradients, BFGS, ...
- Multiresolution

User interaction level

- Manual
- Automatic
- Semi-automatic

Manual registration

- Landmark identification

Manual registration

- Landmark identification
- Landmark interpolation

Variational reconstruction

Find a function

Variational reconstruction

Find a function

Variational reconstruction

Find a function

Rank functions

...
prettiest

Rank functions

Variational criterion

$$
\begin{gathered}
J:\left(\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right) \rightarrow \mathbb{R}_{0}^{+} \\
J(\mathbf{f}) \geq 0
\end{gathered}
$$

Variational reconstruction

Find the best function satisfying the constraints.

Tunable 1D interpolation

$$
J(f)=\left\|\frac{\partial^{M} f}{\partial x^{M}}\right\|^{2}
$$

Tunable 2D interpolation

Reference

reference

Tunable 2D interpolation

Tunable 2D interpolation

alpha $=0.5$

$$
\int\left\|\nabla^{0.5} g(\mathbf{x})\right\|^{2} \mathrm{~d} \mathbf{x}
$$

Tunable 2D interpolation

alpha=0.9

$$
\int\left\|\nabla^{0.9} g(\mathbf{x})\right\|^{2} \mathrm{~d} \mathbf{x}
$$

Tunable 2D interpolation

alpha=1.3

$$
\int\left\|\nabla^{1.3} g(\mathbf{x})\right\|^{2} \mathrm{~d} \mathbf{x}
$$

Tunable 2D interpolation

alpha $=2.5$

$$
\int\left\|\nabla^{2.5} g(\mathbf{x})\right\|^{2} \mathrm{~d} \mathbf{x}
$$

Landmark interpolation (2)

- Constraints
- Hard constraints

$$
\mathbf{g}\left(\mathbf{x}_{i}\right)=\left[\begin{array}{l}
g_{x}\left(\mathbf{x}_{i}\right) \\
g_{y}\left(\mathbf{x}_{i}\right)
\end{array}\right]=\mathbf{z}_{i}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right) \quad \text { for all } i \in\{1, \ldots, N\}
$$

- Soft constraints

$$
\sum_{i=1}^{N}\left\|\mathbf{g}\left(\mathbf{x}_{i}\right)-\mathbf{z}_{i}\right\|^{2} \leq \varepsilon
$$

- Properties
- invariance to scale, shifts, rotations
- representability of linear transforms

Thin-plate splines

- Minimize an energy

$$
\begin{aligned}
& J(g)=\int\left(\frac{\partial^{2} g}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} g}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} g}{\partial y^{2}}\right)^{2} \mathrm{~d} x \mathrm{~d} y \\
& J(\mathbf{g})=J\left(g_{x}\right)+J\left(g_{y}\right)
\end{aligned}
$$

under constraints

$$
g\left(x_{i}, y_{i}\right)=z_{i}
$$

Thin-plate splines

- Minimize an energy

$$
\begin{aligned}
& J(g)=\int\left(\frac{\partial^{2} g}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} g}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} g}{\partial y^{2}}\right)^{2} \mathrm{~d} x \mathrm{~d} y \\
& J(\mathbf{g})=J\left(g_{x}\right)+J\left(g_{y}\right)
\end{aligned}
$$

under constraints

$$
g\left(x_{i}, y_{i}\right)=z_{i}
$$

- Solution (for g_{x} only)
$g_{x}(x, y)=\sum_{i=1}^{N} \lambda_{i} \varrho\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)+a_{0} x+a_{1} y+a_{2}$
with $\left\|\mathbf{x}-\mathbf{x}_{i}\right\|=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}=r$
where $\varrho(r)$ is a radial basis function and $\varrho(r)=r^{2} \log r$

Thin-plate spline calculations

$$
\begin{aligned}
& g_{x}(x, y)=\sum_{i=1}^{N} \lambda_{x, i} \varrho\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)+a_{0} x+a_{1} y+a_{2} \\
& g_{y}(x, y)=\sum_{i=1}^{N} \lambda_{y, i} \varrho\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)+a_{3} x+a_{4} y+a_{5}
\end{aligned}
$$

We have the data constraints:

$$
g_{x}\left(x_{i}, y_{i}\right)=x_{i}^{\prime} \quad g_{y}\left(x_{i}, y_{i}\right)=y_{i}^{\prime}
$$

and the orthogonality constraints

$$
\begin{array}{rlr}
\sum_{i} \lambda_{x, i}=0 & \sum_{i} \lambda_{y, i}=0 \\
\sum_{i} \lambda_{x, i} x_{i}=0 & \sum_{i} \lambda_{y, i} x_{i}=0 \\
\sum_{i} \lambda_{x, i} y_{i}=0 & \sum_{i} \lambda_{y, i} y_{i}=0
\end{array}
$$

Thin-plate spline calculations (2)

Matrix form (for g_{x} only)

$$
\underbrace{\left[\begin{array}{cc}
\mathrm{A} & \mathrm{Q} \\
\mathrm{Q}^{T} & 0
\end{array}\right]}_{\mathrm{B}}\left[\begin{array}{l}
\boldsymbol{\lambda} \\
\mathbf{a}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{s} \\
\mathbf{0}
\end{array}\right]
$$

with

$$
\left.\begin{array}{rl}
\boldsymbol{\lambda} & =\left[\begin{array}{lll}
\lambda_{1} & \ldots & \lambda_{N}
\end{array}\right] \\
\mathbf{a} & =\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right]^{T} \\
\mathbf{s} & =\left[\begin{array}{lll}
x_{1}^{\prime} & x_{2}^{\prime} & \ldots
\end{array} x_{N}^{\prime}\right.
\end{array}\right]^{T} .
$$

Thin-plate spline approximation

Matrix form (for g_{x} only)

$$
\underbrace{\left[\begin{array}{c}
\mathrm{A}+\gamma^{-1} / \\
\mathrm{Q}^{T}
\end{array}\right.}_{\mathrm{B}} \begin{array}{l}
\mathrm{Q}
\end{array}]\left[\begin{array}{l}
\boldsymbol{\lambda} \\
\mathbf{a}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{s} \\
\mathbf{0}
\end{array}\right]
$$

γ is a regularization weight and a Lagrange coefficient corresponding to the allowed error ε.

Least squares fitting

Assume that the transformation \mathbf{g} is parameterized by a small number of parameters $\boldsymbol{\theta}$.

Minimize the landmark registration error:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i}\left\|\mathbf{g}\left(\mathbf{x}_{i}\right)-\mathbf{z}_{i}\right\|^{2}
$$

In simple cases, closed form solution is available, otherwise minimize iteratively.

Aligning two shapes

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(x_{1}^{(1)}, y_{1}^{(1)}, x_{2}^{(1)}, y_{2}^{(1)}, \ldots, x_{N}^{(1)}, y_{N}^{(1)}\right)^{T} \\
& \mathbf{x}^{(2)}=\left(x_{1}^{(2)}, y_{1}^{(2)}, x_{2}^{(2)}, y_{2}^{(2)}, \ldots, x_{N}^{(2)}, y_{N}^{(2)}\right)^{T}
\end{aligned}
$$

Find a transformation (rotation, translation, scaling) of $\mathbf{x}^{(2)}$

$$
\mathcal{T}\left(\mathbf{x}^{(2)}\right)=s R\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
x_{i}^{(2)} s \cos \theta-y_{i}^{(2)} s \sin \theta \\
x_{i}^{(2)} s \sin \theta+y_{i}^{(2)} s \cos \theta
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

such that a sum of squared distances is minimized

$$
E=\sum_{i=1}^{M} w_{i}\left\|s\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]-\left[\begin{array}{l}
x_{i}^{(1)} \\
y_{i}^{(1)}
\end{array}\right]\right\|^{2}
$$

Aligning two shapes

$$
E=\sum_{i=1}^{M} w_{i}\left\|s\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]-\left[\begin{array}{l}
x_{i}^{(1)} \\
y_{i}^{(1)}
\end{array}\right]\right\|^{2}
$$

Minimize $E\left(\theta, s, t_{x}, t_{y}\right)$ as $\quad \min _{\theta} \min _{s, t_{x}, t_{y}} E_{\theta}\left(s, t_{x}, t_{y}\right)$

- Inner minimization wrt s, t_{x}, t_{y}

$$
\frac{\partial E}{\partial t_{x}}=0, \quad \frac{\partial E}{\partial t_{y}}=0, \quad \frac{\partial E}{\partial s}=0
$$

Aligning two shapes

- Inner minimization wrt s, t_{x}, t_{y}

$$
\frac{\partial E}{\partial t_{x}}=0, \quad \frac{\partial E}{\partial t_{y}}=0, \quad \frac{\partial E}{\partial s}=0
$$

leads to linear equations:

$$
\begin{gathered}
s \sum_{i=1}^{M} w_{i} q\left(y_{i},-x_{i}, \theta\right)-N t_{x}=-\sum_{i=1}^{M} w_{i} x_{i}^{\prime} \\
s \sum_{i=1}^{M} w_{i} q\left(-x_{i},-y_{i}, \theta\right)-N t_{y}=-\sum_{i=1}^{M} w_{i} y_{i}^{\prime} \\
s \sum_{i=1}^{M} w_{i}^{2}\left(q^{2}\left(y_{i},-x_{i}, \theta\right)+q^{2}\left(x_{i}, y_{i}, \theta\right)\right)-t_{x} \sum_{i=1}^{M} w_{i} q\left(y_{i},-x_{i}, \theta\right) \\
\quad-t_{y} \sum_{i=1}^{M} w_{i} q\left(-x_{i},-y_{i}, \theta\right) \\
=-\sum_{i=1}^{M} w_{i} x_{i}^{\prime} q\left(y_{i},-x_{i}, \theta\right)+\sum_{i=1}^{M} w_{i} y_{i}^{\prime} q\left(x_{i},-y_{i}, \theta\right)
\end{gathered}
$$

where $q(a, b, \theta)=a \sin \theta+b \cos \theta$.

Aligning two shapes

- Inner minimization wrt s, t_{x}, t_{y}
- Outer minimization wrt θ

One dimensional functional minimization, e.g. Brent's routine or golden section search. (Alternatively, Horn's absolute orientation method can be used.)

Automatic landmark registration

- Feature point detection
- Harris corner detector (smoothed derivatives \rightarrow local structure matrix \rightarrow eigenvalues \rightarrow corner response function)
- Feature point matching
- Template correlation
- Invariant descriptors, e.g. Scale Invariant Feature Transform (gradient direction \rightarrow rotation invariance, scale-space image \rightarrow scale invariance, 4×48-bin histograms of orientations and magnitudes in a neighborhood, normalization \rightarrow 128-element descriptor)
- Outlier pruning
- RANdom Sampling And Consensus
- Landmark fitting (interpolation)

Medical applications of landmark registration

Overview

- Point- and surface based registration
- Image-to-image registration
- Image-to-physical space registration
- Image guided surgery (IGS) applications
- Pre-operative imaging
- Can be slow
- Intra-operative imaging
- Must be fast
- Tracking of surgical instruments and alignment of pre/intraoperative data with physical space of patient lying on operating table
- Must be near real-time and very accurate

Why Image-Guided Surgery?

Amputation at St. Thomas' Hospital 1775 (source: The Old Operating Theatre Museum, St. Thomas' Street, London SE1 9RT)

Why Image-Guided Surgery?

Why Image-Guided Surgery?

Registration of pre-operative CT and MRI to intra-operative scene

Why Image-Guided Surgery?

Why Image-Guided Surgery?

Registration Chain for IGS

Pre-operative
Intra-operative

Generic Feature-Based Registration Procedure

1. Distortion correction and camera calibration for each modality
while dissimilarity > 0 and improvement do
2. Feature extraction
3. Feature pairing
4. Similarity formulation and outlier removal
5. Dissimilarity reduction (optimization)

Great differences in each step depending on images and task!

Point-Based Registration

- Orthogonal Procrustes problem:
- Named after a robber in Greek mythology, who would offer travellers the opportunity to stay the night in a perfectly fitting bed.
- Unfortunately, it was the guest who was altered to fit the bed, rather than the bed to fit the guest!
- Short visitors were stretched to fit, and tall visitors had parts of their body cut off so that they would fit, with invariably fatal results.

The hero Theseus stopped this unpleasant practice by subjecting Procrustes to his own method.

Point-Based Registration

- Orthogonal Procrustes problem:
- "Procrustes" became the criticism for the practice of unjustifiably forcing data to look like they fit another set.
- Now Procrustes statistics has lost is negative associations and is used in shape analysis.
- The Procrustes problem is an optimal fitting problem of least square type.

Point-based registration

- Optimal fitting problem of least square type:
- Closed-form solution for rigid case. Non-rigid registration requires iterative solution
- Given two sets of N corresponding points $\left\{\mathbf{x}_{i}\right\}$ and $\left\{\mathbf{y}_{i}\right\}$, find the rigid-body transformation (rotation matrix \mathbf{R} and translation vector \mathbf{t}) that minimizes the mean squared distance between the points:

$$
\frac{1}{N} \sum_{i=1}^{N}\left|R \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right|^{2}
$$

Point-based registration

- Centre points:
- Compute mean:
- Centre wrt mean:

$$
\begin{array}{cc}
\overline{\mathbf{x}}=\sum_{i=1}^{N} \mathbf{x}_{i} & \overline{\mathbf{y}}=\sum_{i=1}^{N} \mathbf{y}_{i} \\
\overline{\mathbf{x}}_{i}=\mathbf{x}_{i}-\overline{\mathbf{x}} & \overline{\mathbf{y}}_{i}=\mathbf{y}_{i}-\overline{\mathbf{y}}
\end{array}
$$

- Determine rotation matrix R via singular value decomposition (SVD) of correlation matrix H :

$$
\begin{array}{ll}
\mathbf{H}=\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{y}_{i}^{T} & \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \\
\mathbf{H}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}, \mathbf{U}^{T} \mathbf{U}=\mathbf{V}^{T} \mathbf{V}=\mathbf{I} & \mathbf{R}=\mathbf{V D} \mathbf{U}^{T}, \mathbf{D}=\operatorname{diag}\left(1,1, \operatorname{det}\left(\mathbf{V} \mathbf{U}^{T}\right)\right)
\end{array}
$$

- Determine translation vector: $\mathbf{t}=\overline{\mathbf{y}}-\mathbf{R} \overline{\mathbf{x}}$

Point-based registration

Points for Registration

- Anatomic landmarks
- Skin-affixed markers
- Bone-implanted markers
- Advantages of markers
- Fiducial is independent of anatomy
- Automatic algorithms for locating fiducial markers can take advantage of marker's shape and size in order to accurately and robustly compute the fiducial point

"Bummer of a birthmark, Hal!"

Skin-Affixed Markers

- Advantage: non-invasive
- Disadvantage: can move due to mobility of skin

Bone-Implanted Markers

- Advantage: cannot move
- Disadvantage: invasive

Bone-Implanted Markers

Registration Error Measures

- Fiducial localization error (FLE)
- Error of localizing fiducials
- Fiducial registration error (FRE)
- Distance between points (fiducials) used for registration
- Minimum value of cost function
- Target registration error (TRE)
- Distance between points (targets) not used for registration
- This is the clinically relevant error

Point-Based Registration Error: Theory

- Expected value of FRE and TRE has been estimated using perturbation theory
- $\operatorname{FRE}=\mathrm{f}(\mathrm{FLE}, \mathrm{N})$
- TRE $=f(F L E, N$, shape of fiducial configuration, target position)

Point-Based Registration Error: Theory

$$
\begin{gathered}
\left\langle\mathrm{FRE}^{2}\right\rangle=\frac{N-2}{N}\left\langle\mathrm{FLE}^{2}\right\rangle \\
\left\langle\operatorname{TRE}^{2}(\mathbf{r})\right\rangle=\frac{\left\langle\mathrm{FLE}^{2}\right\rangle}{N}\left\{1+\frac{1}{3} \sum_{k=1}^{3} \frac{d_{k}^{2}}{f_{k}^{2}}\right\}
\end{gathered}
$$

Characteristics of TRE

- TRE proportional to FLE
- TRE inversely proportional to $N^{1 / 2}$
- TRE depends on target position r
- TRE has its minimum value at fiducial configuration centroid (translational component)
- TRE increases as the distance of the target point from the principal axes increases
- Iso-error TRE contours are ellipsoidal

Guidelines for Fiducial Marker Placement in Cranial IGS

- Use as many markers as feasible
- Place markers so that the centroid of their configuration is near the regions that are most critical during surgery
- Distribute the markers as far apart as is possible
- Avoid linear, or almost linear, fiducial configurations
- Avoid placing markers on mobile areas of the scalp

Design of Optically Tracked Probes

IREDs are fiducials

Tip is target

Optical Tracking of Instruments: Point-based

Registration

Automatic rigid registration

- Look for rigid (euclidean or affine) transformation
- To compensate different position, scale
- ... or to simplify a more complicated problem

Registration based on voxel similarity

- Registration based on geometrical features requires
- the extraction of points, lines or surfaces
- registration error is affected by localization errors during the feature extraction stage
- Registration based on voxel similarity measures
- uses some measure derived from the intensity of the voxels directly
- assumes that there is a relationship between the image intensities of both images if the images are registered
- does not require any feature extraction, thus registration error is not affected by any localization errors

Registration as minimization

Registration based on voxel similarity

- Optimal transformation \mathbf{T} is determined iteratively by maximizing a voxel-based similarity measure C.
- Voxel-similarity measure C is a function of
- image A (target or reference image)
- image B (source image)
- transformation \mathbf{T}

Registration algorithm

Registration based on voxel similarity

- Registration based on geometric features is independent of the modalities from which the features have been derived
- Registration based on voxel similarity measures features must make a distinction between
- monomodality registration:
- CT-CT, MR-MR, PET-PET, etc
- multimodality registration
- MR-CT, MR-PET, CT-PET, etc

Mono-modal image registration

- Sums of Squared Differences (SSD)

$$
C=\frac{1}{N} \sum_{\text {For all voxels i }}\left(I_{A}\left(\mathbf{p}_{i}\right)-I_{B}\left(\mathbf{T}\left(\mathbf{p}_{i}\right)\right)\right)^{2}
$$

- assumes an identity relationship between image intensities in both images
- optimal measure if the difference between both images is Gaussian noise
- sensitive to outliers

Mono-modal image registration

- Robust statistics can be used to reduce the influence of outliers on the registration
- Sum of absolute differences (SAD)

$$
C=\frac{1}{N} \sum_{i}\left|I_{A}\left(\mathbf{p}_{i}\right)-I_{B}\left(\mathbf{T}\left(\mathbf{p}_{i}\right)\right)\right|
$$

- assumes an identity relationship between image intensities
- less sensitive to outliers

Mono-modal image registration

- Correlation

$$
C=\frac{1}{N} \sum I_{A}\left(\mathbf{p}_{j}\right) \cdot I_{B}\left(\mathbf{T}\left(\mathbf{p}_{i}\right)\right)
$$

- assumes a linear relationship between image intensities
- sensitive to large intensity values
- useful if images have been acquired with different intensity windowing

Mono-modal image registration

- Normalized Cross Correlation (CC)

$$
\mathrm{C}=\frac{\sum\left(I_{A}(\mathbf{p})-\mu_{A}\right)\left(I_{\mathrm{B}}(\mathbf{T}(\mathbf{p}))-\mu_{B}\right)}{\sqrt{\left(\sum\left(I_{A}(\mathbf{p})-\mu_{A}\right)^{2}\right)\left(\sum\left(I_{B}(\mathbf{T}(\mathbf{p}))-\mu_{E}\right)^{2}\right)}}
$$

$-\mu_{A}$ average intensity in image A
$-\mu_{\delta}$ average intensity in image B

- assumes a linear relationship between image intensities
- useful if images have been acquired with different intensity windowing

Mono-modality image registration

- Ratio of Image Uniformity (RIU , Woods et al. 1992)

$$
\begin{gathered}
R(\mathbf{p})=\frac{I_{A}(\mathbf{p})}{I_{B}(\mathbf{T}(\mathbf{p}))} \quad \bar{R}=\frac{1}{N} \sum R(\mathbf{p}) \\
R I U=\frac{\sqrt{1 / N \sum(R(\mathbf{p})-\bar{R})^{2}}}{\bar{R}}
\end{gathered}
$$

aims to maximize the uniformity of the ratio between intensities in image A and B which is measured in form of their standard deviation

Registration basis: Image intensity

- Mono-modal image registration
- Image intensities are related by some simple function
- identity: Use SSD or SAD
- linear: Use CC or RIU
- Multi-modal image registration
- Image intensities are related by some unknown function or statistical relationship
- Relationship between intensities is not known a-priori
- Relationship between intensities can be viewed by inspecting a 2D histogram or co-occurrence matrix

Multi-modality image registration

- Intensity remapping (van den Elsen et al. 1993)
- specific to MR-CT registration
- CT intensities are remapped so that
- soft tissue is bright
- bone and air are dark
- CT looks like MR
- use correlation
- Gradient correlation (van den Elsen et al. 1993)
- extract features like gradients, ridges or creases
- use correlation

Multi-modality image registration

- Partitioned Image Uniformity (PIU, Woods et al. 1993)

$$
P U_{B}=\sum_{g} \frac{n_{g}}{N} \frac{\sigma_{B}(a)}{\mu_{g}(a)} \quad \text { or } \quad P I U_{A}=\sum_{0} \frac{n_{b}}{N} \frac{\sigma_{A}(b)}{\mu_{A}(b)}
$$

- $P I U_{B}$-measures the sum of the normalized standard deviation of voxel values in image B for each intensity level in image A
- $P I U_{A}$ - measures the sum of the normalized standard deviation of voxel values in image A for each intensity level in image B

Multi-modality image registration

- Partitioned Image Uniformity (PIU)

$$
P I U_{B}=\sum \frac{n_{g}}{N} \frac{\sigma_{\beta}(a)}{\mu_{g}(a)}
$$

N is the total number of voxels
n_{a} is the total number of voxels with intensity a

$$
\begin{array}{ll}
\mu_{g}(a)=\frac{1}{n_{g}} \sum_{s} h(a, b) & \begin{array}{l}
\text { is the average intensity in image B } \\
\text { corresponding to intensity a image A }
\end{array} \\
\sigma_{g}(a)=\frac{1}{n_{g}} \sum_{g}(h(a, b)-\mu(a)) & \begin{array}{l}
\text { is the standard deviation } \\
\text { in image B corresponding }
\end{array} \\
& \text { to intensity a image A }
\end{array}
$$

Multi-modality image registration

- Correlation Ratio (CR, Roche et al. 1998)

$$
\begin{array}{cl}
C R_{B}=\frac{1}{\sigma_{s}{ }^{2}} \sum_{a} \frac{n_{g}}{N} \sigma_{b}(a) \quad \text { or } & C R_{A}=\frac{1}{\sigma_{A}{ }^{2}} \sum_{0} \frac{n_{b}}{N} \sigma_{A}(b) \\
\sigma_{\bar{B}}=\frac{1}{N} \sum_{a} \sum_{b}\left(h(a, b)-\mu_{B}\right)^{2} & \text { is the standard deviation } \\
& \text { in image B } \\
\sigma_{\bar{b}}(a)=\frac{1}{n_{a}} \sum_{a}(h(a, b)-\mu(a))^{2} & \begin{array}{l}
\text { is the standard deviation } \\
\text { in image B corresponding } \\
\end{array} \\
\text { to intensity a in image A }
\end{array}
$$

Images as probability distributions

- Images can be viewed as probability distributions $p(a)$
- marginal probability $p(a)$ of a pixel having intensity a
- joint probability $p(a, b)$ of a pixel having intensity a in one image and intensity b in another image
- Probability distribution of an image can be estimated using
- parzen windowing
- histograms
- Histograms require "binning"
- usually use 32 to 256 bins per image

Registration based on voxel similarity: Problems

CT

MR

2D Histograms

MR/MR

2D Histograms

2D Histograms

2D Histograms

2D Histograms

Images as probability distributions

- Frequency of corresponding intensity pairs can be interpreted in terms of probabilities

$$
\begin{array}{ll}
p(a, b)=\frac{h(a, b)}{N} & \begin{array}{l}
\text { is the joint probability of a voxel } \\
\text { having greyvalue a in the first image } \\
\text { and greyvalue } \mathrm{b} \text { in the second image }
\end{array} \\
p(a)=\sum_{0} p(a, b) & \begin{array}{l}
\text { is the marginal probability of a voxel } \\
\text { in the first image having greyvalue a }
\end{array} \\
p(b)=\sum_{a} p(a, b) & \begin{array}{l}
\text { is the marginal probability of a voxel } \\
\text { in the second image having greyvalue } \mathrm{b}
\end{array}
\end{array}
$$

Voxel similarity based on information theory

- Entropy (Shannon-Wiener)

$$
H(A)=-\sum_{z} p(a) \log p(a)
$$

describes the amount of information in image A.

- The information content of an image is maximal (in the information theoretic sense) if all intensities have equal probability.
- The information content of an image is minimal (in the information theoretic sense) if one intensity a has a probability of one, i.e. $p(a)$ $=1$.

Voxel similarity based on information theory

- Joint Entropy (Hill et al., 1994)

$$
H(A, B)=-\sum_{a} \sum_{w} p(a, b) \log p(a, b)
$$

describes the amount of information in the combined images A and B.

- If A and B are totally unrelated, the joint entropy will be the sum of the entropies of A and B
- If A and B are related, the joint entropy will be smaller, i.e.

$$
H(A, B) \leq H(A)+H(B)
$$

- Registration can be achieved my minimizing the joint entropy between both images

Voxel similarity based on information theory

- Interpretation of Joint Entropy

- Joint Entropy is highly sensitive to the overlap of the two images

Voxel similarity based on information theory

- Mutual Information (Viola et al., 1995 and Collignon et al., 1995)

$$
I(A, B)=H(A)+H(B)-H(A, B)
$$

describes how well one image can be explained by another image.

- Mutual Information can be expressed in terms of marginal and joint probability distributions:

$$
I(A, B)=-\sum_{a} \sum_{b} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Voxel similarity based on information theory

- Venn diagram:

Voxel similarity based on information theory

- Communication model:

Voxel similarity based on information theory

- Mutual Information is still sensitive to the overlap of the two images
- Normalized Mutual Information (Studholme et al, 1999)

$$
I(A, B)=\frac{H(A)+H(B)}{H(A, B)}
$$

can be shown to be independent of the amount of overlap between images.

- Registration can be achieved by maximizing (Normalized) Mutual Information between both images

Evaluation of voxel-similarity measures

Optimization of voxel-similarity measures

- Optimization of voxel-similarity measures normally requires iterative techniques, i.e.
- downhill descent
- gradient descent
- see Numerical Recipes for a description of various optimization schemes
- Global optimization schemes are not feasible for image registration
- Local optimization schemes are much more efficient but will get trapped in local optima
\Rightarrow Registration has a limited capture range

Optimization of voxel-similarity measures

Optimisation of voxel-similarity measures

Multi-resolution optimization

- Capture range can be increased by using multiscale techniques:

Multi-resolution optimization

- Registration can be accelerated by using multiresolution techniques:

Optimization of voxel-similarity measures

ITK (Insight Registration and segmentation toolbox)

Automatic elastic B-spline registration

- Look for elastic (non-linear) transformation
- Smooth deformation wanted
- Semi-local model with many parameters

(Uniform) splines

(Uniform) splines

- Piecewise polynomial of degree n
- Continuous $(n-1)^{\text {th }}$ derivative
- (Uniform) knots

Non-uniform splines (1D)

- Polynomial in each interval
- Continuous derivatives
- Boundary conditions (natural)
- \longrightarrow band system of linear equations
- Example: cubic splines

Uniform B-splines

Haar
β_{0}
linear $\quad \beta_{1}$
quadratic β_{2}
cubic $\quad \beta_{3}$

Uniform B-splines

Haar $\quad \beta_{0}$
linear $\quad \beta_{1}$
quadratic β_{2}
cubic $\quad \beta_{3}$

- Generation: $\beta_{n+1}=\beta_{n} * \beta_{0}$
- Basis for splines: $s(x)=\sum_{i} c_{i} \beta(x-i)$

Practical B-splines

- Separability \rightarrow speed
- B-spline transform (finding coefficients) fast through IIR filtering
- Interpolation fast (small support)
- Extension to n-D by Cartesian product. Separability.

Software

Splines Matlab, Numerical Recipes, ...
B-splines Unser, Thevenaz, bigwww.epfl.ch

B-spline image interpolation

$$
f(x, y)=\sum_{i, j} c_{i j} \beta_{n}(x-i) \beta_{n}(x-j)
$$

- B-spline interpolation is global, while P0,P1,P2,P3. . are local
- Pixels on a regular grid \rightleftharpoons B-spline coefficients can be precalculated (IIR filtr)
- Evaluation β_{3} as fast as for P3, better quality.
- Boundary conditions (zero, periodic, mirror)
- Higher orders lead to Gibbs artifacts (ringing).

Spline based warping

- Approximation properties $>$ precision
- Short support $>$ speed
- Scalability
- Representability of linear transforms

$$
\mathbf{g}(\mathbf{x})=\mathbf{x}+\sum_{\mathbf{i} \in \mathbb{Z}^{2}} \mathbf{c}(\mathbf{i}) \beta(\mathbf{x} / \mathbf{h}+\mathbf{d}-\mathbf{i})
$$

Evaluating the difference

Evaluating the difference

Evaluating the difference

Multiresolution

$$
32 \times 32
$$

Multiresolution

64×64

Multiresolution

128×128

Multiresolution

256×256

Multiresolution algorithm

video of the registration
xanim -Ss2

Applications

- EPI distortion

Applications

- EPI distortion

After

Applications

- EPI distortion
- MRI atlas

Atlas

Applications

- EPI distortion
- MRI atlas

Applications

- EPI distortion
- MRI atlas
- CT alignment

Applications

- EPI distortion
- MRI atlas
- CT alignment

Applications

- EPI distortion
- MRI atlas
- CT alignment
- SPECT atlas

(with University Hospital in Geneva)

Applications

- EPI distortion
- MRI atlas
- CT alignment
- SPECT atlas
- Ultrasound

Applications

- EPI distortion
- MRI atlas
- CT alignment
- SPECT atlas
- Ultrasound
- MRI heart sequence

Applications

- EPI distortion
- MRI atlas
- CT alignment
- SPECT atlas
- Ultrasound
- MRI heart sequence
- MRI perfusion

corrected uncorrected original

Validation of registration

- Before an image registration can enter clinical practice, it must undergo thorough validation
- Technical validation
- Speed, robustness, accuracy, reliability,...
- Clinical validation
- Usefulness, improved clinical diagnosis and patient management in health care
- FDA approval, incorporation into commercial system
- Liability

Validation of rigid registration

- Robustness:
- Measurement precision
- Consistency:
- Circular (invertible) transformations
- Visual assessment:
- subtraction images, overlays, landmarks
- Gold standard:
- Implanted/attached markers, landmarks
- Simulation of a ground truth:
- misregistration followed by motion recovery

Robustness

- Robustness can be measured as the discrepancy of registration transformations if different starting estimates are given or the images are perturbed:
- Misregistration of an image by a known amount, e.g. by upto +-30 mm or +-30 degrees
- Adding noise, inhomogeneity
- Deviation from identity transformation which forms the ground truth
- Individual deviations of DOFs (tx,ty,tz,rx,ry,rz,...)
- Target registration error (TRE) at landmarks or within volume overlap

Consistency

- Involves registration of an image triple, A to B, B to C, and C to A
- Ideally, the resulting transformations form a circular registration:

$$
\mathrm{T}_{\mathrm{AB}} \mathrm{~T}_{\mathrm{BC}} \mathrm{~T}_{\mathrm{CA}}(\mathbf{x})=\mathbf{I}(\mathbf{x})=\mathbf{x}
$$

- This can be tested as for robustness via individual transformation parameters or via TRE
- Consistency is not a measure for registration accuracy!

Consistency 1

- Can individual registrations be composed?

Consistency 2

- Scan-Rescan Consistency

Consistency 3

- Forward-reverse registration consistency.

Visual assessment

- View image pair before and after registration
- Subtraction mode (single-modal images)
- Overlay mode
- Iso-contour, colour
- Chess-board, morphing
- Horizontal or vertical "shutters"
- At interesting anatomical positions
- Image reslicing using intensity interpolation
- Nearest-neighbour, trilinear, b-spline, sinc
- Blurring artefacts vs computational complexity
- Only a qualitative validation tool!

Visual Assessment : Subtraction

Visual Assessment

Visual Assessment (cont'd)

Visual Assessment (cont'd)

Visual Assessment (cont'd)

Automatic dense PDE-based registration

- Look for elastic (non-linear) transformation
- General motion (vector) field is sought
- Criteria formulated in the continuous domain
- Regularization to impose smoothness

Some facts about cervical cancer

- Cervical cancer is the second most common cancer among women worldwide
- Nearly 380,000 new cases are diagonosed yearly
- When detected early, cervical neoplasia is nearly 100% curable
- Papanicolau test (Pap Smear) and Colposcopy are the most widespread tests for cancer screening

Diagnosis: Colposcopy

- Colposcopy visually inspects inspects the cervix area at low magnification
- The application of acetic-acid will temporally alter the appearence of cancerous tissue
- Colposcopists must subjectively asses appearence changes in small areas over prolonged periods of time

60 seconds

300 seconds

Deformation as a Vector Field

We represent correspondence function H as a dense vector field

$$
H([x, y])=\left[x^{\prime}, y^{\prime}\right]
$$

Deformed Image

Deformation as a Vector Field

We represent correspondence function H as a dense vector field

$$
H([x, y])=\left[x^{\prime}, y^{\prime}\right]
$$

Deformed Image

Deformation as a Vector Field

We represent correspondence function H as a dense vector field

$$
H([x, y])=\left[x^{\prime}, y^{\prime}\right]
$$

Deformed Image

Deformation as a Vector Field

We represent correspondence function H as a dense vector field

$$
H([x, y])=\left[x^{\prime}, y^{\prime}\right]
$$

Deformed Image

Deformation as a Vector Field

We represent correspondence function H as a dense vector field

$$
H([x, y])=\left[x^{\prime}, y^{\prime}\right]
$$

Deformed Image

Registration as optimization

- Correspondence function H and vector field \mathbf{h} are related by:

$$
\begin{equation*}
H([i, j])=[i, j]+\mathbf{h}(i, j) \tag{1}
\end{equation*}
$$

- The problem is then formulated as the minimization of a criterion J with respect to vector field \mathbf{h} :

$$
\begin{equation*}
\mathbf{h}^{*}=\arg \min _{\mathbf{h}}(J(\mathbf{f} \circ \mathbf{h}, \mathbf{g}, \mathbf{h})) \tag{2}
\end{equation*}
$$

where \mathbf{h}^{*} is the optimal solution, \mathbf{f} and \mathbf{g} are the images to be registered and J is a cost function measuring the dissimilarity between the images and the likelihood of the transformation.

- Cost function J is divided into a data and a regularization term multiplied by a proportionality constant:

$$
\begin{equation*}
J(\mathbf{f}, \mathbf{g}, \mathbf{h})=J_{D}(\mathbf{f} \circ \mathbf{h}, \mathbf{g})+\alpha J_{R}(\mathbf{h}) \tag{3}
\end{equation*}
$$

Similarity criteria

- The data term J_{D} is the sum of squared differences (SSD) between the template image \mathbf{g} and the moving image \mathbf{f} deformed by \mathbf{h} :

$$
\begin{equation*}
J_{D}(\mathbf{f} \circ \mathbf{h}, \mathbf{g})=\int_{(x, y) \subset \Omega}(\mathbf{f}(\mathbf{h}(x, y)+[x, y])-\mathbf{g}(x, y))^{2} \mathrm{~d} x \mathrm{~d} y \tag{4}
\end{equation*}
$$

Discretized version:

$$
\begin{equation*}
J_{D}(\mathbf{f} \circ \mathbf{h}, \mathbf{g})=\sum_{(i, j) \subset \Omega}(\mathbf{f}(\mathbf{h}(i, j)+[i, j])-\mathbf{g}(i, j))^{2} \tag{5}
\end{equation*}
$$

Regularization

- Regularization term penalizes un-smooth deformations and makes the optimization of J a well-posed problem
- Regularization criterion J_{R} is chosen so its gradient coincides with the linearized 2D elasticity operator describing equilibrium in an elastic material.

$$
\begin{gather*}
\nabla J_{R}(\mathbf{h})=\xi \Delta \mathbf{h}+(1-\xi) \nabla(\nabla \cdot \mathbf{h}) \tag{6}\\
J_{R}(\mathbf{h})=\frac{1}{2} \int_{(x, y) \subset \Omega} \quad\left[\xi\left(\partial_{x} h_{x}\right)^{2}+(1-\xi)\left(\left(\partial_{x} h_{x}\right)^{2}+\partial_{x} h_{x} \cdot \partial_{y} h_{y}\right)\right] \\
+\left[\xi\left(\partial_{y} h_{y}\right)^{2}+(1-\xi)\left(\left(\partial_{y} h_{y}\right)^{2}+\partial_{x} h_{x} \cdot \partial_{y} h_{y}\right)\right]
\end{gather*}
$$

Gradient descent optimization

On every iteration:

- Calculate the new deformation field

$$
\begin{equation*}
\mathbf{h}^{\prime}=\mathbf{h}_{i}-\lambda\left(\nabla J\left(\mathbf{f}, \mathbf{g}, \mathbf{h}_{i}\right)\right) \tag{8}
\end{equation*}
$$

- If the step is succesful, then the step is accepted and the step size is increased

$$
\begin{equation*}
\lambda \leftarrow 2 \lambda, \mathbf{h}_{i+1} \leftarrow \mathbf{h}^{\prime}, J_{i+1} \leftarrow J^{\prime} \tag{9}
\end{equation*}
$$

- Otherwise the step size is reduced

$$
\begin{equation*}
\lambda \leftarrow \lambda / 10 \tag{10}
\end{equation*}
$$

- We iterate until convergence (given by a suitable threshold).

Other implementation details

- Multi-resolution was used
- ROI masks were automatically generated
- Images were rigidly pre-registred
- Green color channel only

Experiments

- Algorithm tested with 45 image pairs
- Images taken before and 60 seconds after acetic-acid application
- Cross-polarization filters used to reduce the glint
- Uncompressed 1125×750 pixel 16 -bit images were used

Results

Template
Moving

Results

Results

Results

Results

Unregistered Difference
Registered Difference

Insufficient Regularization

Video cervix registration

Surface-Based Registration

- Surface-based registration:
- Generally aligns a large number of points
- 3D correspondence of anatomy or pathology is often not known or unavailable
- The 3D boundary of an object is an intuitive and easily characterized geometrical feature that can be used for registration
- Surface-based methods involve determining corresponding surfaces in different images and/or physical space and finding transformation that best aligns these surfaces

Surfaces

- Skin surface (air-tissue interface)
- Bone surface (tissue-bone interface)
- Representations
- Point set (collection of points on the surface)
- Faceted surface, e.g., triangle set approximating surface
- Implicit surface
- Parametric surface, e.g., B-spline surface

Surface Feature Extraction

- Images
- Isointensity contour extraction (Marching Cubes)
- Deformable models
- Physical space
- Laser range finders
- Stereo video systems (photogrammetry)
- Localizers
- Articulated mechanical
- Magnetic
- Active and passive optical
- Tracked ultrasound for bone surface

Marching Cubes: Example

Marching Cubes: Example

Skin surface

Bone surface

Surface-Based Registration

- Given a set of N surface points $\left\{\mathbf{x}_{i}\right\}$ and a surface \mathbf{Y}, find the rigid-body transformation (rotation matrix \mathbf{R} and translation vector \mathbf{t}) that minimizes the mean squared distance between the points and the surface:

$$
\begin{gathered}
d(T)=\frac{1}{N} \sum_{j=1}^{N}\left|T\left(\mathbf{x}_{j}\right)-\mathbf{y}_{j}\right|^{2} \\
\mathbf{y}_{j}=C\left(T\left(\mathbf{x}_{j}\right), Y\right)
\end{gathered}
$$

where y_{j} denotes the closest (rather than corresponding) point on Y.

Surface-Based Registration Iterative Closest Point (ICP)

- [Besl \& McKay, PAMI 1992]
- To register data shape \mathbf{X} to model shape \mathbf{Y}, decompose \mathbf{X} into point set $\left\{\mathbf{x}_{i}\right\}$, then
- Compute closest points $\left\{\boldsymbol{y}_{i}\right\}$ on \boldsymbol{Y}
- Register points $\left\{\mathbf{x}_{i}\right\}$ to points $\left\{\mathbf{y}_{i}\right\}$
- Apply resulting transformation to points $\left\{\mathbf{x}_{\mathbf{i}}\right\}$
- Repeat until convergence

Surface-Based Registration

Point-to-Surface Distance

- The calculation of point-to-surface distance is computationally intensive
- Special data structures
- Octree
- k-d binary search tree
- Distance transforms
- Assignment to each voxel \mathbf{v} of the distance between \mathbf{v} and the closest feature voxel
- If feature voxels are surface voxels, then DT provides method for precomputing and storing point-to-surface distance

Quadtrees/Octrees

3D/3D CT-to-Physical Registration

Image-Physical Registration Accuracy

- Stereotactic frame systems (~1-2 mm)
- Point-based registration
- External anatomic landmarks ($\sim 2-4 \mathrm{~mm}$)
- Skin-affixed markers (~ 2-4 mm)
- Bone-implanted markers (~ 1 mm)
- Surface-based registration
- Skin surface (~ 2-5 mm)
- Bone surface ($\sim 1 \mathrm{~mm}$)

2D-3D registration - Example: Image-guided cardiac interventions

2D-3D registration - Example:
 XMR System

- $X M R=X-R a y+M R$ in same room
- Common sliding patient table
- Provides path to MRguided intervention

2D-3D registration - Example: Image-Guided Cardiac Interventions

- Registration by optical tracking
- X-ray table \& c-arm are tracked by Optotrak
- Sliding patient table is tracked by MR system

2D-3D registration - Example: Image-Guided Cardiac Interventions

x-ray

MR rendering

x-ray + MR rendering

Rhode et al. IEEE TMI 2003

2D-3D registration

- So far we have assumed that registration for IGS is based either on
- points
- surfaces
which are identified in the pre-operative image and intra-operative scene
- Registration for IGS can also involve registration of pre-operative image to intra-operative images
- ultrasound
- video
- fluoroscopy

Perspective Transformations

- Subset of projective transformations
- Describe image formation for many modalities
- Photography (pinhole camera) including video
- X-ray projection
- Microscopy
- Endoscopy

2D-3D registration

fixed, e.g. via calibration
unknown, to be estimated by the registration

2D-3D registration

Simplest form of projection:

$$
T_{\text {anrrisisi }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{z} & 0
\end{array}\right)
$$

can be extended to take more physical properties of the imaging into account, e.g. focal length, primary point, distortion, etc

3D-3D Registration

2D-3D Registration

2D-3D Registration Via Digitally Reconstructed Radiograph (DRR)

L. Lemieux et al. Med. Phys. Volume 21, Issue 11, pp. 1749-1760, 1994

2D-3D Registration of Bone Fluoroscopy to CT via DRR Construction

2D-3D registration using photo-consistency

Clarkson et al., IEEE PAMI 2001

2D-3D registration using photo-consistency

Clarkson et al., IEEE PAMI 2001

2D-3D registration using photo-consistency

Clarkson et al., IEEE PAMI 2001

Contour/Surface Projection

Registration conclusions

- Many different approaches
- Many different applications
- Very frequent in medical imaging
- ... but also video processing, 3D reconstruction...
- Trade-off between robustness, speed and generality
- A priori knowledge always usefull, sometimes essential

