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(Biomedical) applications

. . . of image registration

◮ Comparing images
◮ Different times
◮ Different methods
◮ Different subjects

◮ Analyzing sequences
◮ Motion estimation
◮ Segmentation

Qualitative and quantitative information.



Other applications of image registration

◮ video stabilization

◮ video compression

◮ image mosaicking

◮ stereo matching

◮ structure from motion



Motion analysis example

◮ heart ultrasound sequence (2C,4C)

mplayer -fs -loop 10



Registration example

EPI MRI anatomical MRI
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Correspondence function

(x , y)
(x ′, y ′)

Reference image Test image

g
(
[x y ]T

)
= [x ′ y ′]T



Deformation field

0 % deformation



Deformation field

25 % deformation



Deformation field

50 % deformation



Deformation field

75 % deformation



Deformation field

100 % deformation



Image warping
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Classification of registration methods

◮ Feature space — intermediate data extracted from image

◮ Search space — representation of the deformation

◮ Similarity metric — measuring the dissimilarity

◮ Search strategy — how to find the minimum

◮ User interaction level



Registration methods – Feature space

pixels

Fourier wavelet
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Registration methods – Search space

◮ Local
◮ Variational
◮ PDE

◮ Semi-local
◮ (Quad)tree
◮ B-splines
◮ Wavelets

◮ Global
◮ linear
◮ polynomial
◮ harmonic

◮ RBF, krigging

◮ Image dependent models (e.g. adaptive quadtrees)



Similarity metrics

◮ Data term for pixel based criteria
◮ l2 norm (SSD)
◮ l1 norm
◮ correlation, normalized correlation
◮ mutual information, normalized mutual information

◮ Other data terms
◮ image interpolation — important
◮ feature-based methods — distance
◮ template-based methods — windowed pixel-based criteria
◮ transform-based methods — norm in the transform domain
◮ preprocessing — filtering, histogram equalization,. . .

◮ Regularization
◮ Norm (lp) of the derivatives
◮ Implicit regularization (constrained model)
◮ Smoothing



Search strategy

◮ Direct solution

◮ Exhaustive search

◮ Dynamic programming

◮ PDE evolution

◮ Multidimensional optimisation
◮ gradient descent
◮ Newton-like methods, exact/estimated Hessian,

Marquardt-Levenberg, conjugated gradients, BFGS, . . .

◮ Multiresolution



User interaction level

◮ Manual

◮ Automatic

◮ Semi-automatic





Manual registration

◮ Landmark identification



Manual registration

?

◮ Landmark identification

◮ Landmark interpolation
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Rank functions

ugliest . . . prettiest

Variational criterion

J :
(
R
m → R

n)→ R
+
0

J(f) ≥ 0



Variational reconstruction

Find the best function
satisfying the constraints.



Tunable 1D interpolation
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Tunable 2D interpolation
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Tunable 2D interpolation
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Tunable 2D interpolation
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Tunable 2D interpolation
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Landmark interpolation (2)

◮ Constraints
◮ Hard constraints

g(xi ) =

[
gx(xi )
gy (xi)

]

= zi = (x ′i , y
′

i ) for all i ∈ {1, . . . ,N}

◮ Soft constraints
N∑

i=1

‖g(xi )− zi‖
2
≤ ε

◮ Properties
◮ invariance to scale, shifts, rotations
◮ representability of linear transforms



Thin-plate splines
◮ Minimize an energy

J(g) =

∫ (
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∂2g

∂y2

)2

dxdy

J(g) = J(gx ) + J(gy )

under constraints

g(xi , yi ) = zi



Thin-plate splines
◮ Minimize an energy

J(g) =

∫ (
∂2g

∂x2

)2

+ 2

(
∂2g

∂x∂y

)2

+

(
∂2g

∂y2

)2

dxdy

J(g) = J(gx ) + J(gy )

under constraints

g(xi , yi ) = zi

◮ Solution (for gx only)

gx(x , y) =

N∑

i=1

λi̺(‖x− xi‖) + a0x + a1y + a2

with ‖x− xi‖ =
√

(x − xi)2 + (y − yi )2 = r

where ̺(r) is a radial basis function and ̺(r) = r2 log r



Thin-plate spline calculations

gx(x , y) =
N∑

i=1

λx ,i̺(‖x − xi‖) + a0x + a1y + a2

gy (x , y) =
N∑

i=1

λy ,i̺(‖x − xi‖) + a3x + a4y + a5

We have the data constraints:

gx(xi , yi) = x ′i gy (xi , yi) = y ′i

and the orthogonality constraints
∑

i
λx ,i = 0

∑

i
λy ,i = 0

∑

i
λx ,ixi = 0

∑

i
λy ,ixi = 0

∑

i
λx ,iyi = 0

∑

i
λy ,iyi = 0



Thin-plate spline calculations (2)

Matrix form (for gx only)

[
A Q
QT 0

]

︸ ︷︷ ︸

B

[
λ

a

]

=

[
s

0

]

with

λ = [λ1 . . . λN ]

a = [a0 a1 a2]
T

s = [x ′1 x
′

2 . . . x
′

N ]
T

(
A
)

i ,j
= ̺(‖xi − xj‖)

(
Q)i ,: = [xi yi 1]



Thin-plate spline approximation

Matrix form (for gx only)

[
A + γ−1I Q

QT 0

]

︸ ︷︷ ︸

B

[
λ

a

]

=

[
s

0

]

γ is a regularization weight and a Lagrange coefficient
corresponding to the allowed error ε.



Least squares fitting

Assume that the transformation g is parameterized by a small
number of parameters θ.

Minimize the landmark registration error:

θ
∗ = argmin

θ

∑

i

‖g(xi)− zi‖
2

In simple cases, closed form solution is available, otherwise
minimize iteratively.



Aligning two shapes

x(1) = (x
(1)
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Find a transformation (rotation, translation, scaling) of x(2)

T (x(2)) = s R

[

x
(2)
i

y
(2)
i

]

+

[
tx
ty

]

=

[

x
(2)
i s cos θ − y

(2)
i s sin θ

x
(2)
i s sin θ + y

(2)
i s cos θ

]

+

[
tx
ty

]

such that a sum of squared distances is minimized

E =

M∑

i=1

wi

∥
∥
∥
∥
∥
s

[
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x
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Aligning two shapes
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Minimize E (θ, s, tx , ty ) as minθ mins,tx ,ty Eθ(s, tx , ty )

◮ Inner minimization wrt s, tx , ty

∂E

∂tx
= 0 ,

∂E

∂ty
= 0 ,

∂E

∂s
= 0 ,



Aligning two shapes
◮ Inner minimization wrt s, tx , ty

∂E

∂tx
= 0 ,

∂E

∂ty
= 0 ,

∂E

∂s
= 0 ,

leads to linear equations:

s
∑M

i=1 wi q( yi ,−xi , θ)− N tx = −
∑M

i=1 wi x
′

i

s
∑M

i=1 wi q(−xi ,−yi , θ)− N ty = −
∑M

i=1 wi y
′

i

s
∑M

i=1 w
2
i

(

q2(yi ,−xi , θ) + q2(xi , yi , θ)
)

− tx
∑M

i=1 wi q(yi ,−xi , θ)

− ty
∑M

i=1 wi q(−xi ,−yi , θ)

= −

M∑

i=1

wi x
′

i q(yi ,−xi , θ) +

M∑

i=1

wi y
′

i q(xi ,−yi , θ)

where q(a, b, θ) = a sin θ + b cos θ.



Aligning two shapes

◮ Inner minimization wrt s, tx , ty

◮ Outer minimization wrt θ
One dimensional functional minimization, e.g. Brent’s routine
or golden section search. (Alternatively, Horn’s absolute
orientation method can be used.)



Automatic landmark registration

◮ Feature point detection
◮ Harris corner detector (smoothed derivatives → local structure

matrix → eigenvalues → corner response function)

◮ Feature point matching

◮ Template correlation
◮ Invariant descriptors, e.g. Scale Invariant Feature Transform

(gradient direction → rotation invariance, scale-space image
→ scale invariance, 4× 4 8−bin histograms of orientations and
magnitudes in a neighborhood, normalization → 128-element
descriptor)

◮ Outlier pruning

◮ RANdom Sampling And Consensus

◮ Landmark fitting (interpolation)



Medical applications of landmark registration



























































Automatic rigid registration

◮ Look for rigid (euclidean or affine) transformation

◮ To compensate different position, scale

◮ . . . or to simplify a more complicated problem





Registration as minimization

deformation

optimization

test image

reference image

deformed image

difference

criterion E

deformation function g(x)









































































ITK (Insight Registration and segmentation toolbox)



Automatic elastic B-spline registration

◮ Look for elastic (non-linear) transformation

◮ Smooth deformation wanted

◮ Semi-local model with many parameters



(Uniform) splines



(Uniform) splines

◮ Piecewise polynomial of degree n

◮ Continuous (n − 1)th derivative

◮ (Uniform) knots



Non-uniform splines (1D)

◮ Polynomial in each interval

◮ Continuous derivatives

◮ Boundary conditions (natural)

◮ −→ band system of linear equations

◮ Example: cubic splines



Uniform B-splines
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Uniform B-splines

Haar β0
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◮ Generation: βn+1 = βn ∗ β0

◮ Basis for splines: s(x) =
∑

i ci β(x − i)



Practical B-splines

◮ Separability speed

◮ B-spline transform (finding coefficients) fast through IIR
filtering

◮ Interpolation fast (small support)

◮ Extension to n-D by Cartesian product. Separability.

Software

Splines Matlab, Numerical Recipes, . . .

B-splines Unser, Thevenaz, bigwww.epfl.ch

bigwww.epfl.ch


B-spline image interpolation

f (x , y) =
∑

i ,j

cijβn(x − i)βn(x − j)

◮ B-spline interpolation is global, while P0,P1,P2,P3. . . are local

◮ Pixels on a regular grid B-spline coefficients can be
precalculated (IIR filtr)

◮ Evaluation β3 as fast as for P3, better quality.

◮ Boundary conditions (zero, periodic, mirror)

◮ Higher orders lead to Gibbs artifacts (ringing).



Spline based warping

◮ Approximation
properties precision

◮ Short support speed

◮ Scalability

◮ Representability of
linear transforms

g(x) = x+
∑

i∈Z2

c(i)β(x/h+ d− i)



Evaluating the difference



Evaluating the difference



Evaluating the difference

E = (1/N)
∑

i

(
f ct (g(i))− fr (i)

)2



Multiresolution
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Multiresolution
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Multiresolution

128× 128



Multiresolution

256× 256



Multiresolution algorithm
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c
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video of the registration

xanim -Ss2
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Applications

◮ EPI distortion
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(with University Hospital in Geneva)
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velocity (with Mara J. Ledesma-Carbayo)
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Applications

◮ EPI distortion

◮ MRI atlas

◮ CT alignment

◮ SPECT atlas

◮ Ultrasound

◮ MRI heart
sequence

◮ MRI perfusion
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Automatic dense PDE-based registration

◮ Look for elastic (non-linear) transformation

◮ General motion (vector) field is sought

◮ Criteria formulated in the continuous domain

◮ Regularization to impose smoothness



Some facts about cervical cancer

◮ Cervical cancer is the second most common cancer among
women worldwide

◮ Nearly 380,000 new cases are diagonosed yearly

◮ When detected early, cervical neoplasia is nearly 100% curable

◮ Papanicolau test (Pap Smear) and Colposcopy are the most
widespread tests for cancer screening

Female Anatomy



Diagnosis: Colposcopy
◮ Colposcopy visually inspects inspects the cervix area at low

magnification
◮ The application of acetic-acid will temporally alter the

appearence of cancerous tissue
◮ Colposcopists must subjectively asses appearence changes in

small areas over prolonged periods of time

60 seconds 300 seconds



Deformation as a Vector Field
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Registration as optimization

◮ Correspondence function H and vector field h are related by:

H([i , j]) = [i , j] + h(i , j) (1)

◮ The problem is then formulated as the minimization of a
criterion J with respect to vector field h:

h∗ = argmin
h
(J(f ◦ h,g,h )) (2)

where h∗ is the optimal solution, f and g are the images to be
registered and J is a cost function measuring the dissimilarity
between the images and the likelihood of the transformation.

◮ Cost function J is divided into a data and a regularization
term multiplied by a proportionality constant:

J(f,g,h) = JD(f ◦ h,g) + αJR(h) (3)



Similarity criteria

◮ The data term JD is the sum of squared differences (SSD)
between the template image g and the moving image f

deformed by h:

JD(f◦h,g) =

∫

(x ,y)⊂Ω
(f(h(x , y)+[x , y ])−g(x , y))2 dx dy (4)

Discretized version:

JD(f ◦ h,g) =
∑

(i ,j)⊂Ω

(f(h(i , j) + [i , j]) − g(i , j))2 (5)



Regularization

◮ Regularization term penalizes un-smooth deformations and
makes the optimization of J a well-posed problem

◮ Regularization criterion JR is chosen so its gradient coincides
with the linearized 2D elasticity operator describing
equilibrium in an elastic material.

∇JR(h) = ξ∆h+ (1− ξ)∇(∇ · h) (6)

JR(h) =
1

2

∫

(x ,y)⊂Ω

[

ξ (∂xhx)
2 + (1− ξ)

(

(∂xhx)
2 + ∂xhx · ∂yhy

)]

+
[

ξ (∂yhy )
2 + (1− ξ)

(

(∂yhy )
2 + ∂xhx · ∂yhy

)]



Gradient descent optimization

On every iteration:

◮ Calculate the new deformation field

h′ = hi − λ(∇J(f,g,hi )) (8)

◮ If the step is succesful, then the step is accepted and the step
size is increased

λ← 2λ,hi+1 ← h′, Ji+1 ← J ′ (9)

◮ Otherwise the step size is reduced

λ← λ/10 (10)

◮ We iterate until convergence (given by a suitable threshold).



Other implementation details

◮ Multi-resolution was used

◮ ROI masks were automatically generated

◮ Images were rigidly pre-registred

◮ Green color channel only



Experiments

◮ Algorithm tested with 45 image pairs

◮ Images taken before and 60 seconds after acetic-acid
application

◮ Cross-polarization filters used to reduce the glint

◮ Uncompressed 1125x750 pixel 16-bit images were used



Results

Template Moving



Results

Unregistered Checkerboard Unregistered Difference



Results

Deformation Field Registered



Results
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Results

Unregistered Difference Registered Difference



Insufficient Regularization

Deformation Field Registered



Video cervix registration





































































Registration conclusions

◮ Many different approaches

◮ Many different applications

◮ Very frequent in medical imaging

◮ . . . but also video processing, 3D reconstruction. . .

◮ Trade-off between robustness, speed and generality

◮ A priori knowledge always usefull, sometimes essential


	Overview, applications and classification

