RANSAC

Robust model estimation from data contaminated by outliers

Ondřej Chum

Fitting a Line

RANSAC

RANSAC

RANSAC

RANSAC

RANSAC

RANSAC

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

How Many Samples?

On average

$$
\begin{array}{cl}
N & \ldots \text { number of point } \\
I & \ldots \text { number of inliers } \\
m & \ldots \text { size of the sample } \\
\mathrm{P}(\text { good })= & \frac{\binom{I}{m}}{\binom{N}{m}}=\prod_{j=0}^{m-1} \frac{I-j}{N-j}
\end{array}
$$

mean time before the success

$$
\mathrm{E}(k)=1 / \mathrm{P}(\text { good })
$$

How Many Samples?

With confidence p

How large k ?
... to hit at least one pair of points on the line l with probability larger than p (0.95)

Equivalently
...the probability of not hitting any pair of points on l is $\leq 1-p$

How Many Samples?

With confidence p

$$
\left.\begin{array}{cl}
N & \ldots \text { number of point } \\
I & \ldots \text { number of inliers } \\
m & \ldots \text { size of the sample }
\end{array}\right] \begin{gathered}
\binom{I}{m} \\
\mathrm{P}\left(\begin{array}{c}
\text { good })
\end{array}=\prod_{j=0}^{m-1} \frac{I-j}{N-j}\right. \\
\mathrm{P}(\mathrm{bad})=1-\mathrm{P}(\text { good }) \\
\mathrm{P}(\operatorname{bad} k \text { times })=(1-\mathrm{P}(\operatorname{good}))^{k}
\end{gathered}
$$

How Many Samples?

With confidence p
$\mathrm{P}($ bad k times $)=(1-\mathrm{P}(\text { good }))^{k} \leq 1-p$

$$
k \log (1-\mathrm{P}(\operatorname{good})) \leq \log (1-p)
$$

$$
k \geq \log (1-p) / \log (1-\mathrm{P}(\operatorname{good}))
$$

How Many Samples

ミ	I/ N [\%]						
		15\%	20\%	30\%	40\%	50\%	70\%
©	2	132	73	32	17	10	4
R	4	5916	1871	368	116	46	11
E	7	$1.75 \cdot 10^{6}$	$2.34 \cdot 10^{5}$	$1.37 \cdot 10^{4}$	1827	382	35
(1)	8	$1.17 \cdot 10^{7}$	$1.17 \cdot 10^{6}$	$4.57 \cdot 10^{4}$	4570	765	50
	12	$2.31 \cdot 10^{10}$	$7.31 \cdot 10^{8}$	$5.64 \cdot 10^{6}$	$1.79 \cdot 10^{5}$	$1.23 \cdot 10^{4}$	215
0	18	$2.08 \cdot 10^{15}$	$1.14 \cdot 10^{13}$	$7.73 \cdot 10^{9}$	$4.36 \cdot 10^{7}$	$7.85 \cdot 10^{5}$	1838
$\stackrel{\sim}{N}$	30	∞	∞	$1.35 \cdot 10^{16}$	$2.60 \cdot 10^{12}$	$3.22 \cdot 10^{9}$	$1.33 \cdot 10^{5}$
as	40	∞	∞	∞	$2.70 \cdot 10^{16}$	$3.29 \cdot 10^{12}$	$4.71 \cdot 10^{6}$

RANSAC

RANSAC [Fischler, Bolles '81]

In: $\mathrm{U}=\left\{\mathrm{x}_{\mathrm{i}}\right\} \quad$ set of data points, $|\mathrm{U}|=\mathrm{N}$
$f(S): S \rightarrow p \quad$ function f computes model parameters p given a sample S from U
$\rho(p, x)$
Out: p ${ }^{*}$
the cost function for a single data point x
$\mathrm{k}:=0$
Repeat until P\{better solution exists $\}<\eta$ (a function of C^{*} and no. of steps k)
$\mathrm{k}:=\mathrm{k}+1$
I. Hypothesis
(1) select randomly set $S_{k} \subset U$, sample size $\left|S_{k}\right|=m$
(2) compute parameters $p_{k}=f\left(S_{k}\right)$
II. Verification
(3) compute cost $C_{k}=\sum_{x \in U} \rho\left(p_{k}, x\right)$
(4) if $\mathrm{C}^{*}<\mathrm{C}_{\mathrm{k}}$ then $\mathrm{C}^{*}:=\mathrm{C}_{\mathrm{k}}, \mathrm{p}^{*}:=\mathrm{p}_{\mathrm{k}}$
end

PROSAC - PROgressive SAmple Consensus

- Not all correspondences are created equally
- Some are better than others
- Sample from the best candidates first

Sample from here

PROSAC Samples

Draw T_{l} samples from (1 $\ldots l$)
Draw T_{l+1} samples from (1 $\ldots l+1$)

Samples from $(1 \ldots l)$ that are not from $(1 \ldots l+1)$ contain $l+1$

Draw $T_{l+1}-T_{l}$ samples of size $m-1$ and add $\quad l+1$

