Neuroinformatics

April 18, 2013

Lecture 8: Feed Forward Networks

Digital representation of a letter

$$
A \rightarrow \begin{gathered}
H \\
H \\
H \\
H
\end{gathered}
$$

Optical character recognition: Predict meaning from features. E.g., given features \mathbf{x}, what is the character \mathbf{y}

$$
f: \mathbf{x} \in \mathbf{S}_{1}^{n} \rightarrow \mathbf{y} \in \mathbf{S}_{2}^{m}
$$

Examples given by lookup table

Boolean AND function			
x_{1}	x_{2}	y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Look-up table for a non-boolean example function

x_{1}	x_{2}	y
1	2	-1
2	1	1
3	-2	5
-1	-1	7
\ldots	\ldots	\ldots

The population node as perceptron

Update rule: $\mathbf{r}^{\text {out }}=g\left(\mathbf{w r}^{\text {in }}\right)\left(\right.$ component-wise: $\left.r_{i}^{\text {out }}=g\left(\sum_{j} w_{i j} r_{j}^{\text {in }}\right)\right)$
For example: $r_{i}^{\text {in }}=x_{i}, \tilde{y}=r^{\text {out }}$, linear grain function $g(x)=x$:

$$
\tilde{y}=w_{1} x_{1}+w_{2} x_{2}
$$

How to find the right weight values?

Objective (error) function, for example: mean square error (MSE)

$$
E=\frac{1}{2} \sum_{i}\left(r_{i}^{\text {out }}-y_{i}\right)^{2}
$$

Gradient descent method: $w_{i j} \leftarrow w_{i j}-\epsilon \frac{\partial E}{\partial w_{i j}}$

$$
=w_{i j}-\epsilon\left(y_{i}-r_{i}^{\text {out }}\right) r_{j}^{\text {in }}
$$

Initialize weights arbitrarily
Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: $r_{i}^{0}=r_{i}^{\text {in }}=\xi_{i}^{\text {in }}$
Calculate rate of the output nodes: $r_{i}^{\text {out }}=g\left(\sum_{j} w_{i j} r_{j}^{\text {in }}\right)$
Compute the delta term for the output layer: $\delta_{i}=g^{\prime}\left(h_{i}^{\text {out }}\right)\left(\xi_{i}^{\text {out }}-r_{i}^{\text {out }}\right)$ Update the weight matrix by adding the term: $\Delta w_{i j}=\epsilon \delta_{i} r_{j}^{\text {in }}$

Example: OCR

Example: Boolean function

B. Boolean XOR function

perceptronTrain.m

```
%% Letter recognition with threshold perceptron
    clear; clf;
    nIn=12*13; nOut=26;
    wOut=rand (nOut, nIn) -0.5;
% training vectors
    load pattern1;
    rIn=reshape(pattern1', nIn, 26);
    rDes=diag(ones(1, 26));
% Updating and training network
    for training_step=1:20;
        % test all pattern
            rOut=(wOut *rIn)>0.5;
            distH=sum(sum((rDes-rOut).^2))/26;
            error(training_step)=distH;
            % training with delta rule
            wOut=wOut+0.1*(rDes-rOut) *rIn';
    end
    plot(0:19, error)
    xlabel('Training step')
    ylabel('Average Hamming distance')
```


Percepton as Linear Classifier: ML approach

- Assume a binary classification problem, i.e. $S=\left\{s_{1}, s_{2}\right\}$.
- One discriminant function $g(\vec{x})$ enough: classify $y= \begin{cases}s_{1}, & \text { if } g(\vec{x})>0 ; \\ s_{2}, & \text { otherwise. }\end{cases}$
- we will estimate \vec{b}, c directly from the given sample $D=\left\{\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right) \ldots\left(\vec{x}_{m}, y_{m}\right)\right\}$.
- We want $\left(\vec{b}^{t} \vec{x}_{i}+c\right)>0$ if $y_{i}=s_{1}$ and $\left(\vec{b}^{t} \vec{x}_{i}+c\right)<0$ otherwise.
- Same as requesting $\left(\vec{b} t \vec{z}_{i}+c\right)>0$ for all z_{i}, where $z_{i}=x_{i}$ if $y_{i}=s_{1}$ and $z_{i}=-x_{i}$ otherwise.
- Let formally $z_{i}^{n+1}=1 \forall i$ and $\vec{w}=[\vec{b}, c]$ (add c as the last component of \vec{w}).
- Thus we can write simply $g(\vec{z})=\vec{w}^{t} \vec{z}$ and request $\vec{w}^{t} \vec{z}_{i}>0$ for all z_{i}.
- Let

$$
E(\vec{w})=\sum_{\vec{z}_{i} \in M}-\vec{w}^{t} \vec{z}_{i}
$$

where M is the set \vec{z}_{i} that are misclassified.

Percepton ML view

- $E(\vec{b}, c)$ is always non-negative.
- If $E(\vec{w})=0$ then all examples in D are correctly classified and D is linearly separable. We want to find the minimum of $E(\vec{w})$.
- $E(\vec{w})$ is piece-wise linear. A gradient algorithm can be used to search a minimum.
- Gradient algorithm: go towards a minimum by making discrete steps in \Re^{n+1} in the direction opposite to the gradient of $E(\vec{w})$.

$$
\nabla(E(\vec{w}))=\left(\frac{\partial E(\vec{w})}{\partial w_{1}}, \frac{\partial E(\vec{w})}{\partial w_{2}}, \ldots \frac{\partial E(\vec{w})}{\partial w_{n+1}}\right)=\sum_{z_{i} \in M}-\vec{z}
$$

- The perceptron gradient algorithm:

1. $k=0$. Choose a random \vec{w}.
2. $k \leftarrow k+1$
3. $\vec{w} \leftarrow \vec{w}+\eta(k) \sum_{z_{i} \in M_{k}} \vec{z}$
4. if $\left|\nu(k) \sum_{z_{i} \in M_{k}} \vec{z}\right|>\theta$ go to 2
5. return \vec{w}

- η - the learning rate, θ - an error threshold.

Percepton graphical representation

- $y(\vec{x})=\vec{w}^{t} \vec{x}+w_{0}, y\left(\overrightarrow{x_{a}}\right)=y\left(\overrightarrow{x_{b}}\right)$
- $\overrightarrow{x_{a}}$ a $\overrightarrow{x_{b}}$ is on decision surface, hence $\vec{w}^{t}\left(\overrightarrow{x_{a}}-\overrightarrow{x_{b}}\right)=0$)
- w is orthonomal to decision surface, $\omega_{0}(b)$ is translation [Bishop]

Percepton learning

Percepton - linear separability

- If the two classes are linearly separable, the perceptron algorithm will terminate in a finite number of steps with zero training error.
- A problem that is linearly non-separable in \Re^{n} may be separable after being transformed to $\Re^{n^{\prime}} n^{\prime}>n$. For example, new coordinates may contain all quadratic terms:

$$
\left[x(1), \ldots x(n), x^{2}(1), x(1) x(2), x(1) x(3), \ldots x^{2}(n)\right]
$$

- A linear separation method such as the perceptron may be applied in the extended space, generating nonlinear separation in the original space.

Percepton - history

- Frank Rosenblatt - HW realization of percepton in 1958

- Learning of simple symbols and alphabet - inspiration by brain nets
- Character was illuminated by powerful lights, image focused onto 20×20 array of cadmium sulphide photocells giving 400 pixel image
- Patch board - different configuration of input features
- Rack of adaptive weights, each weight rotary variable resistor driven by electric motor - weights were adjusted automatically by the elarning algorithm
- MARK 1 computer (Harvard - IBM): 765000 parts, 16 m long, 2.4 m height, 2 m wide, 3 operation per second, multiplication took 6 sec

The multilayer Perceptron (MLP)

Update rule: $\mathbf{r}^{\text {out }}=g^{\text {out }}\left(\mathbf{w}^{\text {out }} g^{\text {h }}\left(\mathbf{w}^{\text {h }} \mathbf{r}^{\text {in }}\right)\right)$
Learning rule (error backpropagation): $w_{i j} \leftarrow w_{i j}-\epsilon \frac{\partial E}{\partial w_{i j}}$

The error-backpropagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: $r_{i}^{0}:=r_{i}^{\text {in }}=\xi_{i}^{\text {in }}$ Propagate input through the network by calculating the rates of nodes in successive layers l : $r_{i}^{\prime}=g\left(h_{i}^{\prime}\right)=g\left(\sum_{j} w_{i j}^{\prime} r_{j}^{I-1}\right)$
Compute the delta term for the output layer: $\delta_{i}^{\text {out }}=g^{\prime}\left(h_{i}^{\text {out }}\right)\left(\xi_{i}^{\text {out }}-r_{i}^{\text {out }}\right)$ Back-propagate delta terms through the network: $\delta_{i}^{I-1}=g^{\prime}\left(h_{i}^{I-1}\right) \sum_{j} w_{j i}^{\prime} \delta_{j}^{\prime}$ Update weight matrix by adding the term: $\Delta w_{i j}^{l}=\epsilon \delta_{i}^{l} r_{j}^{I-1}$

MLP as universal approximator

- Hidden layer enables realization of complicated non-linear fces
- Each neuron can have its own activation fce
- We suppose that we have only ONE type of activation fce
- QUESTION: Can 3-forward layer approximate any non-linear function?
- ANSWER: YES- thanks to A.Kolmogorov Any continuous fce can be implemented by 3-layes net under assumption of sufficient number of n_{H} hidden neurons,suitable non-linearities and weights w.

Andrej Kolmogorov

- He constructed p̈erpetuum mobileïn high school, his teacher could not discover the trick
- First he studied history in Moscow university
- He published the first scientific work on realities in Novgorod area during 15. a 16. centurary
- The biggest contribution in probability field

mlp.m

```
    \%\% MLP with backpropagation learning on XOR problem
    clear; clf;
    N_i=2; N_h=2; N_o=1;
    w_h=rand (N_h, N_i) -0.5; w_o=rand (N_o,N_h) -0.5;
    \% training vectors (XOR)
    r_i=[0 1001 ; 0011\(]\);
    r_d=[llll \(\left.0 \begin{array}{lll}0 & 1 & 1\end{array}\right]\);
    \% Updating and training network with sigmoid activation function
    for sweep=1:10000;
        \% training randomly on one pattern
            \(i=c e i l(4 *\) rand \() ;\)
            r_h=1./(1+exp(-w_h*r_i(:,i)));
            r_o=1./(1+exp (-w_o*r_h));
            d_o=(r_o.*(1-r_o)).*(r_d(:,i)-r_o);
            d_h \(=\left(r \_h . *\left(1-r \_h\right)\right) . *\left(w \_o^{\prime} * d \_o\right) ;\)
            w_o=w_o 0.7 * (r_h*d_o')';
            w_h=w_h+0.7*(r_i (:,i) *d_h' \()^{\prime}\);
            \% test all pattern
                r_o_test=1./(1+exp (-w_o*(1./(1+exp (-w_h*r_i)))));
            d(sweep) \(=0.5 * \operatorname{sum}\left(\left(r \_o \_t e s t-r \_d\right) .{ }^{\wedge} 2\right)\);
    end
    plot (d)
```


MLP for XOR function

Learning curve for XOR problem

Example 3-layer neural net - XOR problem

- $0 \oplus 0=0,1 \oplus 1=0,1 \oplus 0=1,0 \oplus 1=1$
- $-1 \oplus-1=-1,1 \oplus 1=-1,1 \oplus-1=1,-1 \oplus 1=1$

Non-linear fce approximation
Fourier transform ANALOGY

Comparision of 2-layer and 3-layer net

MLP, generalization, overfitting

Validation

- error of training set in monotonic-decreasing fce because of gradient algorithm optimization
- we divide data to training and validation set We use validation as stopping criteria (e.g. the first minimum)
- DEMO - Neural Network Toolbox Matlab http://www.mathworks.com/products/neuralnet/
- netlab -Bishop

```
http://www1.aston.ac.uk/eas/research/groups/
ncrg/resources/netlab/
```


MLP biological plausibility

1. universal approximator \rightarrow small number of hidden neurons \rightarrow smooth solution \& big number of hidden layers in biological systems
2. problematic training with error-back propagation, some exchange between postsynaptic and presynaptic neurons is possible, however
3. inclusion of derivative terms??
4. non-locality of the algorithm, neuron must gather the back-propagated errors from all other nodes to which it projects

Kernel machine

- better recognition after transformation of feature space $x_{1} x_{2}, x_{i}^{2}$, $x \rightarrow \Theta(x), w \rightarrow \Theta(w)$
- the net input of node $h=\sum_{i}\left(w_{i} r_{i}\right)=w r$, node in the network, $h=\Theta(w) \Theta(r)=K(w, r)$
- K is kernel function, special case is Gaussian kernel function $K(w, x)=\frac{(w-x)^{2}}{2 \delta^{2}}$, FITS tuning curve
- Radial basis networks

Advance learning

- shallow part of errro function, very slow convergence, using momentum term

$$
\Delta w_{i j}(t+1)=\eta \frac{\partial E}{w_{i j}}+\alpha \Delta w_{i j}(t)
$$

- Acceleration of learning process, other fce than MSE: entropic error function

$$
E=\frac{1}{2} \sum_{\mu, i}\left[\left(1+y_{i}^{\mu}\right) \log \frac{1+y_{i}^{\mu}}{1+r_{i}^{\text {out }}}+\left(1-y_{i}^{\mu}\right) \log \frac{1-y_{i}^{\mu}}{1-r_{i}^{\text {out }}}\right]
$$

- measure information content of the output, even less computation of delta term: $g(x)=\tanh (x), \delta_{i}=y_{i}-r^{\text {out }}$
- more sophisticated training using higher-order gradients: in MATLAB Levenberg-Marquardt. The relation of such sophistivate technique to biological learning is,so far, unclear!
- random search \rightarrow stochastic processes, stochastic annealing, genetic algorithms

Self-organizing network architectures

- how many nodes we need? too few \rightarrow not good mapping, too many \rightarrow reduction of generalization abilities, how the nodes should be connected?
- node creation algorithm \rightarrow adding more and more nodes
- pruning algorithms \rightarrow starting with large number of ones, e.g. weight decay, $w_{i j}(t+1)=w_{i j}(t)+\delta w_{i j}-\epsilon^{\text {decay }} w_{i j}(t)$
- genetics algorithm \rightarrow vector [0010001] indicating presence of connection, biological inspiration \rightarrow development of major structure of the central nervous system

The chromosome for the whole matrix

0011000110000010000100000

The chromosome for the feed forward portion only

Recurrent mapping networks - context units

- Elman net - simple recurrent net, physical back-projections
- short-term memory - input is connected to context units remember the inputs from the previous time steps
- training of sequence of inputs e.g. predicting the next output (time series)

Output nodes

Probabilistic MLP

- data classification, $n^{\text {out }}$ classes probability of the membership of the object
- all outputs nodes to $1, r^{o} u t$ firing rate of output node

$$
\sum_{i} r_{i}^{o u t}=1
$$

- output layer competing for the output \rightarrow collateral inhibitory connections, strong inhabitation - winner take all
- confidence of membership - soft competition:

$$
r_{i}^{\text {out }}=\frac{e^{r_{i}^{\text {out }}}}{\sum_{j} r_{j}^{\text {out }}}
$$

MLP with softmax output function

MLP with approximate softmax version

Support Vector Machines

- MLP: good interpolators, bad extrapolaters, local problem minima, slow convergence
- margin: distance from the middle line to the border, large-margin classifiers: more robust than percepton

Linear large-margine classifier

Margin

- distance of the line to the origins: $\frac{(\theta+1)}{|w|}, \frac{(\theta-1)}{|w|}$
- distance between the lines: $d=\frac{2}{|w|}$, minimizing weights subject to constrains

$$
\begin{aligned}
w_{1} x_{1}+w_{2} x_{2}-\theta & =0 \\
w_{1} x_{1}+w_{2} x_{2}-\theta & =1 \\
w_{1} x_{1}+w_{2} x_{2}-\theta & =-1 \\
y(w x-\theta-1) & <0
\end{aligned}
$$

- Lagrange formalism, constraints are added with multiplies α
- L_{P} is quadratic optimization problem, equivalent to dual problem L_{D}, data points on margine \rightarrow support vector

$$
L_{P}=\frac{1}{2}|w|^{2}+\sum_{i} \alpha_{i} y_{i}\left(w x_{i}-\theta\right)+\operatorname{sum}_{i} \alpha_{i}
$$

SVM: Kernel trick

- non-linear separable data! Transformation $\phi(x)=\left(x, x^{2}\right)$, Kernel function $\phi)\left(x_{i}\right) \phi\left(x_{j}\right)=K\left(x_{i}, x_{j}\right)$
- right choice of kernel \rightarrow convex optimization problem:

$$
K\left(x_{i}, x_{j}\right)=e^{\frac{\left(x_{i}, x_{j}\right)^{2}}{2 \sigma^{2}}}
$$

Further Readings

Simon Haykin (1999), Neural networks: a comprehensive foundation, MacMillan (2nd edition).
John Hertz, Anders Krogh, and Richard G. Palmer (1991), Introduction to the theory of neural computation, Addison-Wesley.
Berndt Müller, Joachim Reinhardt, and Michael Thomas Strickland (1995), Neural Networks: An Introduction, Springer
Christopher M. Bishop (2006), Pattern Recognition and Machine Learning, Springer
Laurence F. Abbott and Sacha B. Nelson (2000), Synaptic plasticity: taming the beast, in Nature Neurosci. (suppl.), 3: 1178-83.
Christopher J. C. Burges (1998), A Tutorial on Support Vector Machines for Pattern Recognition in Data Mining and Knowledge Discovery 2:121-167.
Alex J. Smola and Bernhard Schölhopf (2004), A tutorial on support vector regression in Statistics and computing 14: 199-222.
David E. Rumelhart, James L. McClelland, and the PDP research group (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press.
Peter McLeod, Kim Plunkett, and Edmund T. Rolls (1998), Introduction to connectionist modelling of cognitive processes, Oxford University Press.
E. Bruce Goldstein (1999), Sensation \& perception, Brooks/Cole Publishing Company (5th edition).

