
Neuroinformatics

April 5, 2012

Lecture 8: Feed Forward Networks

Digital representation of a letter

A
13 14

23

33

25

35

15

24

34

1 2 3

.

.
0
0
1
.
.
0
1
0
.
.
0
1
0
.
.

<-15

Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y

f : x 2 Sn
1 ! y 2 Sm

2

Examples given by lookup table

Boolean AND function
x1 x2 y
0 0 1
0 1 0
1 0 0
1 1 1

Look-up table for a non-boolean example function
x1 x2 y
1 2 -1
2 1 1
3 -2 5
-1 -1 7
...

The population node as perceptron

Update rule: rout = g(wrin) (component-wise: r out

i = g(
P

j wij r in

j))
For example: r in

i = xi , ỹ = r out, linear grain function g(x) = x :

ỹ = w1x1 + w2x2

Y
w1

w2

r1in

r2in

r out
g

 4
 2

0
2

4

 4
 2

0
2

4

-5

0

5

x 1
x2

yy,~

How to find the right weight values?
Objective (error) function, for example: mean square error (MSE)

E =
1
2

X

i

(r out

i � yi)
2

Gradient descent method: wij wij � ✏ @E
@wij

= wij � ✏(yi � r out

i)r in

j for MSE, linear gain

w

E(w)

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i = r in

i = ⇠in

i
Calculate rate of the output nodes: r out

i = g(
P

j wij r in

j)
Compute the delta term for the output layer: �i = g0(hout

i)(⇠out

i � r out

i)
Update the weight matrix by adding the term: �wij = ✏�i r in

j

Example: OCR

>> displayLetter(1)
 +++
 +++
 +++++
 ++ ++
 ++ ++
 +++ +++
 +++++++++
 +++++++++++
 +++ +++
 +++ +++
 +++ +++
 +++ +++

A. Training pattern B. Learning curve C. Generalization ability

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Fraction of flipped bits

Av
er

ag
e

nu
m

be
r o

f w
ro

ng
 le

tte
rs

Max activation
function

Threshold activation
function

0 5 10 15 200

2

4

6

8

10

12

Training step

Av
er

ag
e

nu
m

be
r o

f w
ro

ng
 b

its

Example: Boolean function

Y

x

x1

2

w = 11

w = 12

x

x 1

2

x x y
0
0
1
1

0
1
0
1

0
1
1
1

1 2

x x y
0
0
1
1

0
1
0
1

0
1
1
0

1 2

x1

x2

y

?
x

x
1

2

x1

x2

A. Boolean OR function

B. Boolean XOR function

x =10 w = O = 10

w x + w x = O1 21 2

perceptronTrain.m

1 %% Letter recognition with threshold perceptron
2 clear; clf;
3 nIn=12*13; nOut=26;
4 wOut=rand(nOut,nIn)-0.5;
5
6 % training vectors
7 load pattern1;
8 rIn=reshape(pattern1’, nIn, 26);
9 rDes=diag(ones(1,26));

10
11 % Updating and training network
12 for training_step=1:20;
13 % test all pattern
14 rOut=(wOut*rIn)>0.5;
15 distH=sum(sum((rDes-rOut).ˆ2))/26;
16 error(training_step)=distH;
17 % training with delta rule
18 wOut=wOut+0.1*(rDes-rOut)*rIn’;
19 end
20
21 plot(0:19,error)
22 xlabel(’Training step’)
23 ylabel(’Average Hamming distance’)

Percepton as Linear Classifier: ML approach
I Assume a binary classification problem, i.e. S = {s1, s2}.
I One discriminant function g(~x) enough: classify

y =

⇢
s1, if g(~x) > 0;
s2, otherwise.

I we will estimate ~b, c directly from the given sample
D = {(~x1, y1), (~x2, y2) . . . (~xm, ym)}.

I We want
⇣
~bt~xi + c

⌘
> 0 if yi = s1 and

⇣
~bt~xi + c

⌘
< 0 otherwise.

I Same as requesting
⇣
~bt~zi + c

⌘
> 0 for all zi , where zi = xi if

yi = s1 and zi = �xi otherwise.
I Let formally zn+1

i = 1 8i and ~w = [~b, c] (add c as the last
component of ~w).

I Thus we can write simply g(~z) = ~wt~z and request ~wt ~zi > 0 for all
zi .

I Let
E(~w) =

X

~zi2M

�~wt ~zi

where M is the set ~zi that are misclassified.

Percepton ML view
I E(~b, c) is always non-negative.
I If E(~w) = 0 then all examples in D are correctly classified and D

is linearly separable. We want to find the minimum of E(~w).
I E(~w) is piece-wise linear. A gradient algorithm can be used to

search a minimum.
I Gradient algorithm: go towards a minimum by making discrete

steps in <n+1 in the direction opposite to the gradient of E(~w).

r(E(~w)) =

✓
@E(~w)

@w1
,
@E(~w)

@w2
, . . .

@E(~w)

@wn+1

◆
=

X

zi2M

�~z

I The perceptron gradient algorithm:
1. k = 0. Choose a random ~w .
2. k k + 1
3. ~w ~w + ⌘(k)

P
zi2Mk

~z
4. if |⌫(k)

P
zi2Mk

~z| > ✓ go to 2
5. return ~w

I ⌘ - the learning rate, ✓ - an error threshold.

Percepton graphical representation
I y(~x) = ~wt~x + w0, y(~xa) = y(~xb)

I ~xa a ~xb is on decision surface, hence ~wt(~xa � ~xb) = 0)
I w is orthonomal to decision surface, !0(b) is translation [Bishop]

Percepton learning

Percepton - linear separability
I If the two classes are linearly separable, the perceptron algorithm

will terminate in a finite number of steps with zero training error.
I A problem that is linearly non-separable in <n may be separable

after being transformed to <n0
n0 > n. For example, new

coordinates may contain all quadratic terms:

[x(1), . . . x(n), x2(1), x(1)x(2), x(1)x(3), . . . x2(n)]

I A linear separation method such as the perceptron may be
applied in the extended space, generating nonlinear separation
in the original space.

Percepton - history

I Frank Rosenblatt - HW realization of percepton in 1958

I Learning of simple symbols and alphabet - inspiration by brain
nets

I Character was illuminated by powerful lights, image focused onto
20 x 20 array of cadmium sulphide photocells giving 400 pixel
image

I Patch board - different configuration of input features
I Rack of adaptive weights, each weight rotary variable resistor

driven by electric motor - weights were adjusted automatically by
the elarning algorithm

I MARK 1 computer (Harvard - IBM): 765000 parts, 16 m long, 2.4
m height, 2 m wide, 3 operation per second, multiplication took 6
sec

The multilayer Perceptron (MLP)

n n nin h out

1

2

n

1

n

in

out

r

r

r

r

r

in

out

out

in

in

1r
h

w wh out

Update rule: rout = gout(woutgh(whrin))

Learning rule (error backpropagation): wij wij � ✏ @E
@wij

The error-backpropagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i := r in

i = ⇠in

i
Propagate input through the network by calculating the rates of nodes in
successive layers l : r l

i = g(hl
i) = g(

P
j w l

ij r
l�1
j)

Compute the delta term for the output layer: �out

i = g0(hout

i)(⇠out

i � r out

i)
Back-propagate delta terms through the network: �l�1

i = g0(hl�1
i)

P
j w l

ji�
l
j

Update weight matrix by adding the term: �wl
ij = ✏�l

i r
l�1
j

MLP as universal approximator

I Hidden layer enables realization of complicated non-linear fces
I Each neuron can have its own activation fce
I We suppose that we have only ONE type of activation fce
I QUESTION: Can 3-forward layer approximate any non-linear

function?
I ANSWER: YES- thanks to A.Kolmogorov

Any continuous fce can be implemented by 3-layes net
under assumption of sufficient number of nH hidden
neurons,suitable non-linearities and weights w .

Andrej Kolmogorov

I He constructed p̈erpetuum mobileı̈n high school, his teacher
could not discover the trick

I First he studied history in Moscow university
I He published the first scientific work on realities in Novgorod

area during 15. a 16. centurary
I The biggest contribution in probability field

mlp.m

1 %% MLP with backpropagation learning on XOR problem
2 clear; clf;
3 N_i=2; N_h=2; N_o=1;
4 w_h=rand(N_h,N_i)-0.5; w_o=rand(N_o,N_h)-0.5;
5
6 % training vectors (XOR)
7 r_i=[0 1 0 1 ; 0 0 1 1];
8 r_d=[0 1 1 0];
9

10 % Updating and training network with sigmoid activation function
11 for sweep=1:10000;
12 % training randomly on one pattern
13 i=ceil(4*rand);
14 r_h=1./(1+exp(-w_h*r_i(:,i)));
15 r_o=1./(1+exp(-w_o*r_h));
16 d_o=(r_o.*(1-r_o)).*(r_d(:,i)-r_o);
17 d_h=(r_h.*(1-r_h)).*(w_o’*d_o);
18 w_o=w_o+0.7*(r_h*d_o’)’;
19 w_h=w_h+0.7*(r_i(:,i)*d_h’)’;
20 % test all pattern
21 r_o_test=1./(1+exp(-w_o*(1./(1+exp(-w_h*r_i)))));
22 d(sweep)=0.5*sum((r_o_test-r_d).ˆ2);
23 end
24 plot(d)

MLP for XOR function

1

2r

r

r

in

out

in

1
1

1
1

1
 21.5

0.5

0.5

0.5

0.5 0 5000 10000
0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 e
rro

r

Training steps

Learning curve for XOR problem

Example 3-layer neural net - XOR problem
I 0

L
0 = 0, 1

L
1 = 0, 1

L
0 = 1, 0

L
1 = 1

I �1
L
�1 = �1, 1

L
1 = �1, 1

L
�1 = 1, �1

L
1 = 1

MLP approximating sine function

<2 0 2 4 6 8

<1

0

1

x

f (x)

Non-linear fce approximation

Fourier transform ANALOGY

Comparision of 2-layer and 3-layer net

Validation
I error of training set in monotonic-decreasing fce because of

gradient algorithm optimization
I we divide data to training and validation set We use validation as

stopping criteria (e.g. the first minimum)
I DEMO - Neural Network Toolbox Matlab
http://www.mathworks.com/products/neuralnet/

I Data are from UCI Machine Learning Repository
http://mlearn.ics.uci.edu/MLRepository.html

http://www.mathworks.com/products/neuralnet/
http://mlearn.ics.uci.edu/MLRepository.html

MLP biological plausibility

1. universal approximator! small number of hidden neurons!
smooth solution & big number of hidden layers in biological
systems

2. problematic training with error-back propagation, some exchange
between postsynaptic and presynaptic neurons is possible,
however

3. inclusion of derivative terms??
4. non-locality of the algorithm, neuron must gather the

back-propagated errors from all other nodes to which it projects

Kernel machine
I better recognition after transformation of feature space x1x2,x2

i ,
x ! ⇥(x), w ! ⇥(w)

I the net input of node h =
P

i(wiri) = wr , node in the network,
h = ⇥(w)⇥(r) = K (w , r)

I K is kernel function, special case is Gaussian kernel function
K (w , x) = (w�x)2

2�2 , FITS tuning curve
I Radial basis networks

r in

r h

c

1r
in

2r
in

3r
in

r out

3r h

2r h

1r h

4r hc w

Advance learning

I shallow part of errro function, very slow convergence, using
momentum term

�wij(t + 1) = ⌘
@E
wij

+ ↵�wij(t)

I Acceleration of learning process, other fce than MSE: entropic
error function

E =
1
2

X

µ,i

[(1 + yµ
i) log

1 + yµ
i

1 + r out
i

+ (1� yµ
i) log

1� yµ
i

1� r out
i

]

I measure information content of the output, even less
computation of delta term: g(x) = tanh(x)�i = y)i � r out

I more sophisticated training using higher-order gradients: in
MATLAB Levenberg-Marquardt. The relation of such sophistivate
technique to biological learning is,so far, unclear!

I random search! stochastic processes, stochastic annealing,
genetic algorithms

