Neuroinformatics

April 5, 2012

Lecture 8: Feed Forward Networks

Digital representation of a letter

!

'
24 B3
34 B3

IRV ARRNER

Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y

f:xeS]—-yeS?Y

Examples given by lookup table

Boolean AND function

Xq X2 y
0 0 1
0 1 0
1 0 0
1 1 1

Look-up table for a non-boolean example function

X1 X2y
1 2 -1
2 1 1
3 -2 5

4 17

The population node as perceptron

Update rule: r*** = g(wr™) (component-wise: i = g(3=; w;r"))
For example: ri™ = x;, ¥ = r°™, linear grain function g(x) = x:

}7 = W1Xq + WoXo

n w,

rn W,

How to find the right weight values?
Objective (error) function, for example: mean square error (MSE)

1 ou 2
EZEXI:(U)

Gradient descent method: wj < w; — eg—vfl_j
= W/] - E(y,‘ - I’,-"u‘)rji“ for MSE, linear gain
Ew)
\\>

Initialize weights arbitrarily
Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: r’ = ri* = ¢
Calculate rate of the output nodes: i = g(3_; wyr")
Compute the delta term for the output layer: §; = g'(h")(&™ — ")
Update the weight matrix by adding the term: Aw; = e5ir

Example: OCR

A. Training pattern B. Learning curve C. Generalization ability
12 »
>> displayLetter (1) 2 & | Threshold activation
+ht 210 @ | function
ot c 25
ot 2 s
8 g
++ o+t »Z 220
4+ 4+ 5 kS
+++ +4+ 86 I3 15
(= Qo
bbbt EN §1o Max activation
bbb ° 2 function
+++ +++ 2 Q5
(o]
+++ +++ ° 2 o
4t e z E 0
e A % 5 10 15 20 0 o1 02 03 04 05

Training step Fraction of flipped bits

Example: Boolean function

A. Boolean OR function

a 200
- O =0

X, X

mao0co
—‘O—KON
o - -ol<

perceptronTrain.m

1 %% Letter recognition with threshold perceptron
2 clear; clf;

3 nIn=12+x13; nOut=26;

4 wOut=rand (nOut,nIn)-0.5;

5

6 % training vectors

7 load patternl;

8 rIn=reshape (patternl’, nIn, 26);

9 rDes=diag (ones (1,26));
10
11 % Updating and training network

12 for training_step=1:20;

13 % test all pattern

14 rOut=(wOut+rIn)>0.5;

15 distH=sum(sum((rDes-rOut)."2))/26;
16 error (training_step)=distH;

17 % training with delta rule

18 wOut=wOut+0.1x (rDes—-rOut)»rIn’;
19 end
20
21 plot (0:19,error)
22 xlabel (' Training step’)

23 ylabel (' Average Hamming distance’

Percepton as Linear Classifier: ML approach

>

>

Assume a binary classification problem, i.e. S = {sy, sz}.

One discriminant function g(X) enough: classify
[sy, ifg(X)>0;
y= S», otherwise.
we will estimate 5, c directly from the given sample
D= {(X1,y1), (X2, ¥2) - .. (Xm, Ym)}-
We want (5’)?,- + C) >0if y; = sy and (Ef)’(',- + c) < 0 otherwise.

Same as requesting (Bff,- + c) > 0 for all z;, where z; = x; if
yi = s1 and z; = —x; otherwise.
Let formally z™' =1 vi and w = [b, c] (add c as the last
component of w).
Thus we can write simply g(Z) = w'Z and request w'Zz; > 0 for all
Zj .
Let
E(w) = —w'z

Zie

<

where M is the set Z; that are misclassified.

Percepton ML view

» E(b, c) is always non-negative.
» If E(w) = 0 then all examples in D are correctly classified and D
is linearly separable. We want to find the minimum of E(w).

» E(w) is piece-wise linear. A gradient algorithm can be used to
search a minimum.

» Gradient algorithm: go towards a minimum by making discrete
steps in R+ in the direction opposite to the gradient of E(w).

-y -z

Z,'EM

S(EW) = <8E(VT/) OE(W) a::‘(ﬁ))

owy ’ ows ""8Wn+1

» The perceptron gradient algorithm:
1. k = 0. Choose a random w.
2. kK« k+1
8. W wHn(k) X, cn 2
4. if [u(K) 3, em, Zl > 0 goto 2
5. return w

n - the learning rate, 6 - an error threshold.

v

Percepton graphical representation

> y(X) = WX + wo, y(Xa) = y(Xb)
> Xz a Xp is on decision surface, hence w!(xz — xp) = 0)
» w is orthonomal to decision surface, woy(b) is translation [Bishop]

y >0 To

Percepton learning

[
J
0.5
Ld
0
-05 []
-1
-1 0.5 05
1 ry 1
LJ
o \®
05 0.5
0 0
-0.5 =05
4 -1
-1 -0.5 0.5 -1

Percepton - linear separability

» If the two classes are linearly separable, the perceptron algorithm
will terminate in a finite number of steps with zero training error.

» A problem that is linearly non-separable in " may be separable
after being transformed to *” n’ > n. For example, new
coordinates may contain all quadratic terms:

[x(1),...x(n), x3(1), x(1)x(2), x(1)x(3), ... x2(n)]

» A linear separation method such as the perceptron may be
applied in the extended space, generating nonlinear separation
in the original space.

4
o i
a %06 o

Percepton - history

» Frank Rosenblatt - HW realization of percepton in 1958

» Learning of simple symbols and alphabet - inspiration by brain
nets

» Character was illuminated by powerful lights, image focused onto
20 x 20 array of cadmium sulphide photocells giving 400 pixel
image

» Patch board - different configuration of input features

» Rack of adaptive weights, each weight rotary variable resistor
driven by electric motor - weights were adjusted automatically by
the elarning algorithm

» MARK 1 computer (Harvard - IBM): 765000 parts, 16 m long, 2.4
m height, 2 m wide, 3 operation per second, multiplication took 6
sec

The multilayer Perceptron (MLP)

nin nh nout

Update rule: ro*t = gout(weugh(whrin))

; Ay oE
Learning rule (error backpropagation): wj < w; — €ow,

The error-backpropagation algorithm

Initialize weights arbitrarily

Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: r? := ri" = ¢i°
Propagate input through the network by calculating the rates of nodes in
successive layers I: r{ = g(h}) = g(3=; wjr| ™"
Compute the delta term for the output layer: 6" = g'(h™) (& — ™)
Back-propagate delta terms through the network: &; ' = g'(h;~") °, w;é]
Update weight matrix by adding the term: Awj = ejr/™"

MLP as universal approximator

vV v . v Y

Hidden layer enables realization of complicated non-linear fces
Each neuron can have its own activation fce

We suppose that we have only ONE type of activation fce
QUESTION: Can 3-forward layer approximate any non-linear
function?

ANSWER: YES- thanks to A.Kolmogorov

Any continuous fce can be implemented by 3-layes net
under assumption of sufficient number of ny hidden
neurons,suitable non-linearities and weights w.

Andrej Kolmogorov

» He constructed perpetuum mobilein high school, his teacher
could not discover the trick

» First he studied history in Moscow university

» He published the first scientific work on realities in Novgorod
area during 15. a 16. centurary

» The biggest contribution in probability field

mip.m

1 %% MLP with backpropagation learning on XOR problem
2 clear; clf;

3 N_i=2; N_h=2; Nol,

4 w_h=rand (N_h,N_1i)-0.5; w_o=rand(N_o,N_h)-0.5;

5

6 % training vectors (XOR)

7 r i=(01 01 ; 00 11];

8 r d=[0 11 0];

9

10 % Updating and training network with sigmoid activation function
11 for sweep=1:10000;

12 % training randomly on one pattern

13 i=ceil (4xrand);

14 r_h=1./(l+exp(-w_h*r_i(:,1)));

15 r_o=1./(l+exp(-w_o*r_h));

16 d_o=(r_o.x(l-r_o)).*(r_d(:,1i)-r_o);

17 d_h=(r_] h *(l-r_h)) .* (w_o’xd_o);

18 w_o=w_0+0.7* (r_h=*d o’)’

19 w_h=w_h+0.7*(r_i(:,i)*d_h")’;

20 % test all pattern

21 r_o_test=1./(l+exp (-w_ox (1./(l+exp(-w_h*r_1i)))));
22 d(sweep)=0.5+«sum((r_o_test-r_d)."2);

23 end

24 plot (d)

MLP for XOR function

Learning curve for XOR problem

0.5

0.4

Training error

0.3

0.2
0 5000 10000

Training steps

Example 3-layer neural net - XOR problem

> 0P0=0,1P1=0,1P0=1,0P1=1
» 1P -1=-1,1P1=-1,1P-1=1,-1P1 =1

MLP approximating sine function

Non-linear fce approximation

Fourier transform ANALOGY

Comparision of 2-layer and 3-layer net

X;

two layer)

A R

three layer

A A2

- X,

Validation

» error of training set in monotonic-decreasing fce because of
gradient algorithm optimization

» we divide data to training and validation set We use validation as
stopping criteria (e.g. the first minimum)

» DEMO - Neural Network Toolbox Matlab
http://www.mathworks.com/products/neuralnet/

» Data are from UCI Machine Learning Repository
http://mlearn.ics.uci.edu/MLRepository.html

J/n

\

test

o
///] ,}]
&

epochs
1 2 3 4 5 6 7 8 9 10 11

http://www.mathworks.com/products/neuralnet/
http://mlearn.ics.uci.edu/MLRepository.html

MLP biological plausibility

1. universal approximator — small number of hidden neurons —
smooth solution & big number of hidden layers in biological
systems

2. problematic training with error-back propagation, some exchange
between postsynaptic and presynaptic neurons is possible,
however

3. inclusion of derivative terms??

4. non-locality of the algorithm, neuron must gather the
back-propagated errors from all other nodes to which it projects

Kernel machine

» better recognition after transformation of feature space x;x2,x?,
X — O(x), w — O(w)

» the net input of node h =" ,(w;r;) = wr, node in the network,
h=0(w)o(r) = K(w,r)

» K is kernel function, special case is Gaussian kernel function

K(w, x) = W2 FITS tuning curve

» Radial basis networks

Advance learning

>

shallow part of errro function, very slow convergence, using
momentum term

0E
AW,/(t + 1) =n— + OéAW,/(t)
i
Acceleration of learning process, other fce than MSE: entropic
error function

1—yr
2 Z[erl lOQ out +(1 —Yi)IOg olut

I

measure |nformat|on content of the output, even less
computation of delta term: g(x) = tanh(x)é; = y)i — revt

more sophisticated training using higher-order gradients: in
MATLAB Levenberg-Marquardt. The relation of such sophistivate
technique to biological learning is,so far, unclear!

random search — stochastic processes, stochastic annealing,
genetic algorithms

