Neuroinformatics

April 5, 2012

Lecture 8: Feed Forward Networks

Kロトメ部トメミトメミト ミニのQC

Digital representation of a letter

Optical character recognition: Predict meaning from features. E.g., given features **x**, what is the character **y**

$$
f: \bm{x} \in \bm{S}_1^n \rightarrow \bm{y} \in \bm{S}_2^m
$$

Examples given by lookup table

Look-up table for a non-boolean example function

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

The population node as perceptron

Update rule: $\mathbf{r}^{\text{out}} = g(\mathbf{w}\mathbf{r}^{\text{in}})$ (component-wise: $r_i^{\text{out}} = g(\sum_j w_{ij}r_j^{\text{in}})$) For example: $r_j^{\text{in}} = x_j$, $\tilde{y} = r^{\text{out}}$, linear grain function $g(x) = x$:

$$
\tilde{y}=w_1x_1+w_2x_2
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト …

 299

How to find the right weight values?

Objective (error) function, for example: mean square error (MSE)

$$
E=\frac{1}{2}\sum_i(r_i^{\text{out}}-y_i)^2
$$

Gradient descent method: $w_{ij} \leftarrow w_{ij} - \epsilon \frac{\partial E}{\partial w_{ij}}$ $=$ $W_{ij} - \epsilon (y_i - r_i^{\text{out}})r_j^{\text{in}}$

for MSE, linear gain

Initialize weights arbitrarily Repeat until error is sufficiently small Apply a sample pattern to the input nodes: $r_i^0 = r_i^{\text{in}} = \xi_i^{\text{in}}$ Calculate rate of the output nodes: $r^{\text{out}}_i = g(\sum_j w_{ij} r^{\text{in}}_j)$ Compute the delta term for the output layer: $\delta_i = g'(h_i^{\text{out}})(\xi_i^{\text{out}} - r_i^{\text{out}})$ Update the weight matrix by adding the term: $\Delta w_{ij} = \epsilon \delta_i r_j^{\text{in}}$

Example: OCR

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Example: Boolean function

A. Boolean OR function

イロトメ 御 トメ 君 トメ 君 トー

 \equiv 990

perceptronTrain.m

```
1 %% Letter recognition with threshold perceptron<br>2 clear: clf:
 2 clear; clf;<br>3 nIn=12*13;3 nIn=12*13; nOut=26;<br>4 WOut=rand(nOut,nIn)4 wOut=rand(nOut,nIn)-0.5;
 \frac{5}{6}6 % training vectors<br>7 load pattern1:
       load pattern1:
 8 rIn=reshape(pattern1', nIn, 26);<br>9 rDes=diag(opes(1–26));
        9 rDes=diag(ones(1,26));
10
11 % Updating and training network<br>12 for training step=1:20:
       for training step=1:20;
13 % test all pattern
14 rOut=(wOut*rIn)>0.5;<br>15 distH=sum(sum(rDes-
              distH=sum(sum((rDes-rOut).<sup>^2)</sup>)/26;
16 error(training_step)=distH;<br>17 % training with delta rule
             % training with delta rule
18 wOut=wOut+0.1*(rDes-rOut)*rIn';<br>19 end
       end
2021 plot(0:19,error)
22 xlabel('Training step')
23 ylabel('Average Hamming distance')
```
Percepton as Linear Classifier: ML approach

- Assume a binary classification problem, i.e. $S = \{s_1, s_2\}$.
- \triangleright One discriminant function $g(\vec{x})$ enough: classify

$$
y = \left\{ \begin{array}{ll} s_1, & \text{if } g(\vec{x}) > 0; \\ s_2, & \text{otherwise.} \end{array} \right.
$$

- \blacktriangleright we will estimate \vec{b} , *c* directly from the given sample $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2) \dots (\vec{x}_m, y_m)\}.$
- \blacktriangleright We want $\left(\vec{b}^t \vec{x}_i + c\right) > 0$ if $y_i = s_1$ and $\left(\vec{b}^t \vec{x}_i + c\right) < 0$ otherwise.
- \blacktriangleright Same as requesting $\left(\vec{b}^t \vec{z}_i + c \right) > 0$ for all z_i , where $z_i = x_i$ if $y_i = s_1$ and $z_i = -x_i$ otherwise.
- Externally $z_i^{n+1} = 1 \forall i$ and $\vec{w} = [\vec{b}, c]$ (add *c* as the last component of \vec{w}).
- ▶ Thus we can write simply $g(\vec{z}) = \vec{w}^t \vec{z}$ and request $\vec{w}^t \vec{z_i} > 0$ for all *zi* .

 \blacktriangleright Let

$$
E(\vec{w}) = \sum_{\vec{z}_i \in M} -\vec{w}^t \vec{z}_i
$$

where *M* is the set \vec{z}_i that are misclassifie[d.](#page-7-0)

Percepton ML view

- \blacktriangleright $E(\vec{b}, c)$ is always non-negative.
- If $E(\vec{w}) = 0$ then all examples in *D* are correctly classified and *D* is linearly separable. We want to find the minimum of $E(\vec{w})$.
- \blacktriangleright $E(\vec{w})$ is piece-wise linear. A gradient algorithm can be used to search a minimum.
- \triangleright Gradient algorithm: go towards a minimum by making discrete steps in \mathbb{R}^{n+1} in the direction opposite to the gradient of $E(\vec{w})$.

$$
\nabla(E(\vec{w})) = \left(\frac{\partial E(\vec{w})}{\partial w_1}, \frac{\partial E(\vec{w})}{\partial w_2}, \dots \frac{\partial E(\vec{w})}{\partial w_{n+1}}\right) = \sum_{z_i \in M} -\vec{z}
$$

KORKAR KERKER E VOOR

- \blacktriangleright The perceptron gradient algorithm:
	- 1. $k = 0$. Choose a random \vec{w} .

2.
$$
k \leftarrow k + 1
$$

3.
$$
\vec{w} \leftarrow \vec{w} + \eta(k) \sum_{z_i \in M_k} \vec{z}
$$

- 4. if $|\nu(k) \sum_{z_i \in M_k} z^2| > \theta$ go to [2](#page-9-0)
- 5. return *w*~
- \blacktriangleright η the learning rate, θ an error threshold.

Percepton graphical representation

- $\mathbf{v} \cdot \mathbf{y}(\vec{x}) = \vec{w}^t \vec{x} + w_0, \ y(\vec{x}_a) = y(\vec{x}_b)$
- \blacktriangleright \vec{x}_a a \vec{x}_b is on decision surface, hence $\vec{w}^t(\vec{x}_a \vec{x_b}) = 0$)
- ightharpoonal to decision surface, $\omega_0(b)$ is translation [Bishop]

KORK ERKER ADAM ADA

Percepton learning

 290 È È 4 ロ ▶ 4 伊 B \sim \mathcal{A} \mathbf{h} \mathcal{A} . \mathbf{b}

Percepton - linear separability

- \blacktriangleright If the two classes are linearly separable, the perceptron algorithm will terminate in a finite number of steps with zero training error.
- A problem that is linearly non-separable in \mathbb{R}^n may be separable after being transformed to $\Re^{n'} n' > n$. For example, new coordinates may contain all quadratic terms:

 $[x(1),...,x(n),x^2(1),x(1)x(2),x(1)x(3),...x^2(n)]$

 \triangleright A linear separation method such as the perceptron may be applied in the extended space, generating nonlinear separation in the original space.

つのへ

Percepton - history

 \blacktriangleright Frank Rosenblatt - HW realization of percepton in 1958

- \triangleright Learning of simple symbols and alphabet inspiration by brain nets
- \triangleright Character was illuminated by powerful lights, image focused onto 20 x 20 array of cadmium sulphide photocells giving 400 pixel image
- \blacktriangleright Patch board different configuration of input features
- \blacktriangleright Rack of adaptive weights, each weight rotary variable resistor driven by electric motor - weights were adjusted automatically by the elarning algorithm
- \triangleright MARK 1 computer (Harvard IBM): 765000 parts, 16 m long, 2.4 m height, 2 m wide, 3 operation per second, multiplication took 6 sec

The multilayer Perceptron (MLP)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Update rule: $\mathbf{r}^{\text{out}} = g^{\text{out}}(\mathbf{w}^{\text{out}}g^{\text{h}}(\mathbf{w}^{\text{h}}\mathbf{r}^{\text{in}}))$

Learning rule (error backpropagation): $w_{ij} \leftarrow w_{ij} - \epsilon \frac{\partial E}{\partial w_{ij}}$

The error-backpropagation algorithm

Initialize weights arbitrarily Repeat until error is sufficiently small Apply a sample pattern to the input nodes: $r_i^0 := r_i^{\text{in}} = \xi_i^{\text{in}}$ Propagate input through the network by calculating the rates of nodes in successive layers *l*: $r_i^l = g(h_i^l) = g(\sum_j w_{ij}^l r_j^{l-1})$ Compute the delta term for the output layer: $\delta_i^{\text{out}} = g'(h_i^{\text{out}})(\xi_i^{\text{out}} - r_i^{\text{out}})$ Back-propagate delta terms through the network: $\delta_i^{l-1} = g'(h_i^{l-1}) \sum_j w_{ji}^l \delta_j^l$ Update weight matrix by adding the term: $\Delta w_{ij}^l = \epsilon \delta_i^l r_j^{l-1}$

KOD KOD KED KED E VOOR

MLP as universal approximator

- \blacktriangleright Hidden layer enables realization of complicated non-linear fces
- \blacktriangleright Each neuron can have its own activation fce
- \triangleright We suppose that we have only ONE type of activation fce
- ▶ QUESTION: Can 3-forward layer approximate any non-linear **function?**

KORK ERKER ADAM ADA

ANSWER: YES- thanks to A.Kolmogorov Any continuous fce can be implemented by 3-layes net under assumption of sufficient number of n_H hidden **neurons,suitable non-linearities and weights** *w***.**

Andrej Kolmogorov

- ▶ He constructed perpetuum mobile in high school, his teacher could not discover the trick
- \blacktriangleright First he studied history in Moscow university
- \blacktriangleright He published the first scientific work on realities in Novgorod area during 15. a 16. centurary
- \triangleright The biggest contribution in probability field

KORK ERKER ADAM ADA

mlp.m

```
1 %% MLP with backpropagation learning on XOR problem<br>2 clear; clf;
  2 clear; clf;<br>3 N_i = 2 \cdot N_h =3 N_i = 2; N_h = 2; N_o = 1;<br>4 w h=rand (N h, N i)-0.
          W_h=rand(N_h,N_i)-0.5; W_0=rand(N_o,N_h)-0.5;
 \frac{5}{6}6 \frac{1}{6} training vectors (XOR)<br>7 r = 0101; 00111;7 \quad r_i = [0 \ 1 \ 0 \ 1 \ ; \ 0 \ 0 \ 1 \ 1];<br>8 r_i = [0 \ 1 \ 1 \ 0];r_{d=10} 1 1 0;9
10 % Updating and training network with sigmoid activation function<br>11 for sweep=1:10000:
11 for sweep=1:10000;<br>12 % training rando
             12 % training randomly on one pattern
13 i=ceil(4*rand);<br>14 r h=1/(1+exp(-n))14 r_h=1./(1+exp(-w_h*x_i(t,i)));<br>15 r_o=1./(1+exp(-w_o*x_h));15 r_{0}=1./(1+\exp(-w_{0}+r_{h}));<br>16 d_{0}=(r_{0}+(1-r_{0})), *(r_{0}+r_{0})16 d_o=(r_o \cdot (1-r_o)) \cdot (r_d(:,i)-r_o);<br>17 d_e(r_h \cdot (1-r_h)) \cdot (w_o \cdot d_o);17 d_h=(r_h. * (1-r_h)). * (w_o'*d_o);<br>18 w_o=w_o+0.7*(r_h*d_o')':
18 W_0 = W_0 + 0.7*(r_0 + d_0')';<br>
19 W_0 = W_0 + 0.7*(r_0; i_1);19 w_h=w_h+0.7*(r_i:(,i)*d_h')';<br>20 \frac{1}{2} test all pattern
             % test all pattern
21 r_{o{\text{-}}test=1.}/(1+\exp(-w_{o*}(1./(1+\exp(-w_{h*r}\text{in})))));<br>
22 d(\text{sween})=0.5*\sum(r_{o{\text{-}}test-r})^{2}.22 d(sweep)=0.5*sum((r_o_test-r_d).^2);end
24 plot(d)
```
MLP for XOR function

Learning curve for XOR problem

K ロ > K 個 > K 差 > K 差 >

重

 2990

Example 3-layer neural net - XOR problem

$$
\blacktriangleright \; 0 \bigoplus 0 = 0, \, 1 \bigoplus 1 = 0, \, 1 \bigoplus 0 = 1, \, 0 \bigoplus 1 = 1
$$

 \blacktriangleright $-1 \bigoplus -1 = -1, 1 \bigoplus 1 = -1, 1 \bigoplus -1 = 1, -1 \bigoplus 1 = 1$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

MLP approximating sine function

イロメイ団メイ君メイ君メー君 290

Non-linear fce approximation

Fourier transform ANALOGY

 \Rightarrow イロトメ 御 トメ 差 トメ 差 ト 2990

Comparision of 2-layer and 3-layer net

 290 Þ

Validation

- \triangleright error of training set in monotonic-decreasing fce because of gradient algorithm optimization
- \triangleright we divide data to training and validation set We use validation as stopping criteria (e.g. the first minimum)
- ▶ DEMO Neural Network Toolbox Matlab <http://www.mathworks.com/products/neuralnet/>
- \triangleright Data are from UCI Machine Learning Repository <http://mlearn.ics.uci.edu/MLRepository.html>

 QQ

MLP biological plausibility

- 1. universal approximator \rightarrow small number of hidden neurons \rightarrow smooth solution & big number of hidden layers in biological systems
- 2. problematic training with error-back propagation, some exchange between postsynaptic and presynaptic neurons is possible, however
- 3. inclusion of derivative terms??
- 4. non-locality of the algorithm, neuron must gather the back-propagated errors from all other nodes to which it projects

KORK ERKER ADAM ADA

Kernel machine

- better recognition after transformation of feature space x_1x_2, x_i^2 , $x \to \Theta(x)$, $w \to \Theta(w)$
- In the net input of node $h = \sum_i (w_i r_i) = wr$, node in the network, $h = \Theta(w)\Theta(r) = K(w,r)$
- \triangleright K is kernel function, special case is Gaussian kernel function $K(w, x) = \frac{(w-x)^2}{2\delta^2}$, FITS tuning curve
- \blacktriangleright Radial basis networks

KORK ERKER ADAM ADA

Advance learning

 \triangleright shallow part of errro function, very slow convergence, using momentum term

$$
\Delta w_{ij}(t+1) = \eta \frac{\partial E}{w_{ij}} + \alpha \Delta w_{ij}(t)
$$

 \triangleright Acceleration of learning process, other fce than MSE: entropic error function

$$
E = \frac{1}{2} \sum_{\mu,i} [(1 + y_i^{\mu}) \log \frac{1 + y_i^{\mu}}{1 + r_i^{out}} + (1 - y_i^{\mu}) \log \frac{1 - y_i^{\mu}}{1 - r_i^{out}}]
$$

- \triangleright measure information content of the output, even less computation of delta term: $g(x) = \tanh(x)\delta_i = y$)*i* – *r*^{out}
- \triangleright more sophisticated training using higher-order gradients: in MATLAB Levenberg-Marquardt. The relation of such sophistivate technique to biological learning is,so far, unclear!
- **Example 2** random search \rightarrow stochastic processes, stochastic annealing, genetic algorithms