
Neuroinformatics

April 10, 2014

Lecture 8: Feed Forward Networks

Digital representation of a letter

A
13 14

23

33

25

35

15

24

34

1 2 3

.

.
0
0
1
.
.
0
1
0
.
.
0
1
0
.
.

<-15

Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y

f : x ∈ Sn
1 → y ∈ Sm

2

Examples given by lookup table

Boolean AND function
x1 x2 y
0 0 1
0 1 0
1 0 0
1 1 1

Look-up table for a non-boolean example function
x1 x2 y
1 2 -1
2 1 1
3 -2 5
-1 -1 7
...

The population node as perceptron

Update rule: rout = g(wrin) (component-wise: r out
i = g(

∑
j wij r in

j))
For example: r in

i = xi , ỹ = r out, linear grain function g(x) = x :

ỹ = w1x1 + w2x2

Σ
w1

w2

r1
in

r2
in

r out

g
 4

 2
0

2
4

 4
 2

0
2

4

-5

0

5

x 1
x2

yy,~

How to find the right weight values?
Objective (error) function, for example: mean square error (MSE)

E =
1
2

∑
i

(r out
i − yi)

2

Gradient descent method: wij ← wij − ε ∂E
∂wij

= wij − ε(yi − r out
i)r in

j for MSE, linear gain

w

E(w)

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i = r in

i = ξin
i

Calculate rate of the output nodes: r out
i = g(

∑
j wij r in

j)

Compute the delta term for the output layer: δi = g′(hout
i)(ξout

i − r out
i)

Update the weight matrix by adding the term: ∆wij = εδi r in
j

Example: OCR

>> displayLetter(1)
 +++
 +++
 +++++
 ++ ++
 ++ ++
 +++ +++
 +++++++++
 +++++++++++
 +++ +++
 +++ +++
 +++ +++
 +++ +++

A. Training pattern B. Learning curve C. Generalization ability

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Fraction of flipped bits

Av
er

ag
e

nu
m

be
r o

f w
ro

ng
 le

tte
rs

Max activation
function

Threshold activation
function

0 5 10 15 200

2

4

6

8

10

12

Training step

Av
er

ag
e

nu
m

be
r o

f w
ro

ng
 b

its

Example: Boolean function

Σ

x

x1

2

w = 11

w = 12

x

x 1

2

x x y
0
0
1
1

0
1
0
1

0
1
1
1

1 2

x x y
0
0
1
1

0
1
0
1

0
1
1
0

1 2

x1

x2

y

?
x

x
1

2

x1

x2

A. Boolean OR function

B. Boolean XOR function

x =10 w = Θ = 10

w x + w x = Θ1 21 2

perceptronTrain.m

1 %% Letter recognition with threshold perceptron
2 clear; clf;
3 nIn=12*13; nOut=26;
4 wOut=rand(nOut,nIn)-0.5;
5
6 % training vectors
7 load pattern1;
8 rIn=reshape(pattern1’, nIn, 26);
9 rDes=diag(ones(1,26));

10
11 % Updating and training network
12 for training_step=1:20;
13 % test all pattern
14 rOut=(wOut*rIn)>0.5;
15 distH=sum(sum((rDes-rOut).ˆ2))/26;
16 error(training_step)=distH;
17 % training with delta rule
18 wOut=wOut+0.1*(rDes-rOut)*rIn’;
19 end
20
21 plot(0:19,error)
22 xlabel(’Training step’)
23 ylabel(’Average Hamming distance’)

Percepton as Linear Classifier: ML approach
I Assume a binary classification problem, i.e. S = {s1, s2}.
I One discriminant function g(~x) enough: classify

y =

{
s1, if g(~x) > 0;
s2, otherwise.

I we will estimate ~b, c directly from the given sample
D = {(~x1, y1), (~x2, y2) . . . (~xm, ym)}.

I We want
(
~bt~xi + c

)
> 0 if yi = s1 and

(
~bt~xi + c

)
< 0 otherwise.

I Same as requesting
(
~bt~zi + c

)
> 0 for all zi , where zi = xi if

yi = s1 and zi = −xi otherwise.
I Let formally zn+1

i = 1 ∀i and ~w = [~b, c] (add c as the last
component of ~w).

I Thus we can write simply g(~z) = ~w t~z and request ~w t ~zi > 0 for all
zi .

I Let
E(~w) =

∑
~zi∈M

−~w t ~zi

where M is the set ~zi that are misclassified.

Percepton ML view

I E(~b, c) is always non-negative.
I If E(~w) = 0 then all examples in D are correctly classified and D

is linearly separable. We want to find the minimum of E(~w).
I E(~w) is piece-wise linear. A gradient algorithm can be used to

search a minimum.
I Gradient algorithm: go towards a minimum by making discrete

steps in <n+1 in the direction opposite to the gradient of E(~w).

∇(E(~w)) =

(
∂E(~w)

∂w1
,
∂E(~w)

∂w2
, . . .

∂E(~w)

∂wn+1

)
=
∑
zi∈M

−~z

I The perceptron gradient algorithm:
1. k = 0. Choose a random ~w .
2. k ← k + 1
3. ~w ← ~w + η(k)

∑
zi∈Mk

~z
4. if |ν(k)

∑
zi∈Mk

~z| > θ go to 2
5. return ~w

I η - the learning rate, θ - an error threshold.

Percepton graphical representation
I y(~x) = ~w t~x + w0, y(~xa) = y(~xb)

I ~xa a ~xb is on decision surface, hence ~w t (~xa − ~xb) = 0)

I w is orthonomal to decision surface, ω0(b) is translation [Bishop]

Percepton learning

Percepton - linear separability
I If the two classes are linearly separable, the perceptron algorithm

will terminate in a finite number of steps with zero training error.
I A problem that is linearly non-separable in <n may be separable

after being transformed to <n′
n′ > n. For example, new

coordinates may contain all quadratic terms:

[x(1), . . . x(n), x2(1), x(1)x(2), x(1)x(3), . . . x2(n)]

I A linear separation method such as the perceptron may be
applied in the extended space, generating nonlinear separation
in the original space.

Percepton - history

I Frank Rosenblatt - HW realization of percepton in 1958

I Learning of simple symbols and alphabet - inspiration by brain
nets

I Character was illuminated by powerful lights, image focused onto
20 x 20 array of cadmium sulphide photocells giving 400 pixel
image

I Patch board - different configuration of input features
I Rack of adaptive weights, each weight rotary variable resistor

driven by electric motor - weights were adjusted automatically by
the elarning algorithm

I MARK 1 computer (Harvard - IBM): 765000 parts, 16 m long, 2.4
m height, 2 m wide, 3 operation per second, multiplication took 6
sec

The multilayer Perceptron (MLP)

n n nin h out

1

2

n

1

n

in

out

r

r

r

r

r

in

out

out

in

in

1r
h

w wh out

Update rule: rout = gout(woutgh(whrin))

Learning rule (error backpropagation): wij ← wij − ε ∂E
∂wij

The error-backpropagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i := r in

i = ξin
i

Propagate input through the network by calculating the rates of nodes in
successive layers l : r l

i = g(hl
i) = g(

∑
j w l

ij r
l−1
j)

Compute the delta term for the output layer: δout
i = g′(hout

i)(ξout
i − r out

i)

Back-propagate delta terms through the network: δl−1
i = g′(hl−1

i)
∑

j w l
jiδ

l
j

Update weight matrix by adding the term: ∆w l
ij = εδl

i r
l−1
j

MLP as universal approximator

I Hidden layer enables realization of complicated non-linear fces
I Each neuron can have its own activation fce
I We suppose that we have only ONE type of activation fce
I QUESTION: Can 3-forward layer approximate any non-linear

function?
I ANSWER: YES- thanks to A.Kolmogorov

Any continuous fce can be implemented by 3-layes net
under assumption of sufficient number of nH hidden
neurons,suitable non-linearities and weights w .

Andrej Kolmogorov

I He constructed p̈erpetuum mobileı̈n high school, his teacher
could not discover the trick

I First he studied history in Moscow university
I He published the first scientific work on realities in Novgorod

area during 15. a 16. centurary
I The biggest contribution in probability field

mlp.m

1 %% MLP with backpropagation learning on XOR problem
2 clear; clf;
3 N_i=2; N_h=2; N_o=1;
4 w_h=rand(N_h,N_i)-0.5; w_o=rand(N_o,N_h)-0.5;
5
6 % training vectors (XOR)
7 r_i=[0 1 0 1 ; 0 0 1 1];
8 r_d=[0 1 1 0];
9

10 % Updating and training network with sigmoid activation function
11 for sweep=1:10000;
12 % training randomly on one pattern
13 i=ceil(4*rand);
14 r_h=1./(1+exp(-w_h*r_i(:,i)));
15 r_o=1./(1+exp(-w_o*r_h));
16 d_o=(r_o.*(1-r_o)).*(r_d(:,i)-r_o);
17 d_h=(r_h.*(1-r_h)).*(w_o’*d_o);
18 w_o=w_o+0.7*(r_h*d_o’)’;
19 w_h=w_h+0.7*(r_i(:,i)*d_h’)’;
20 % test all pattern
21 r_o_test=1./(1+exp(-w_o*(1./(1+exp(-w_h*r_i)))));
22 d(sweep)=0.5*sum((r_o_test-r_d).ˆ2);
23 end
24 plot(d)

MLP for XOR function

1

2r

r
r

in

out

in

1
1

1
1

1 21.5

0.5

0.5

0.5

0.5 0 5000 10000
0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 e
rro

r

Training steps

Learning curve for XOR problem

Example 3-layer neural net - XOR problem
I 0

⊕
0 = 0, 1

⊕
1 = 0, 1

⊕
0 = 1, 0

⊕
1 = 1

I −1
⊕
−1 = −1, 1

⊕
1 = −1, 1

⊕
−1 = 1, −1

⊕
1 = 1

Non-linear fce approximation

Fourier transform ANALOGY

Comparision of 2-layer and 3-layer net

MLP, generalization, overfitting

0 1 2 3−1

0

1

2

3

x

f (x) over�tting

true mean

under�tting

Validation
I error of training set in monotonic-decreasing fce because of

gradient algorithm optimization
I we divide data to training and validation set We use validation as

stopping criteria (e.g. the first minimum)
I DEMO - Neural Network Toolbox Matlab
http://www.mathworks.com/products/neuralnet/

I netlab -Bishop
http://www1.aston.ac.uk/eas/research/groups/
ncrg/resources/netlab/

http://www.mathworks.com/products/neuralnet/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

MLP biological plausibility

1. universal approximator→ small number of hidden neurons→
smooth solution & big number of hidden layers in biological
systems

2. problematic training with error-back propagation, some exchange
between postsynaptic and presynaptic neurons is possible,
however

3. inclusion of derivative terms??
4. non-locality of the algorithm, neuron must gather the

back-propagated errors from all other nodes to which it projects

Kernel machine
I better recognition after transformation of feature space x1x2,x2

i ,
x → Θ(x), w → Θ(w)

I the net input of node h =
∑

i (wi ri) = wr , node in the network,
h = Θ(w)Θ(r) = K (w , r)

I K is kernel function, special case is Gaussian kernel function
K (w , x) = (w−x)2

2δ2 , FITS tuning curve
I Radial basis networks

r in

r h

c

1r in

2r
in

3r
in

r out

3r h

2r h

1r h

4r h
c w

Advance learning

I shallow part of errro function, very slow convergence, using
momentum term

∆wij (t + 1) = η
∂E
wij

+ α∆wij (t)

I Acceleration of learning process, other fce than MSE: entropic
error function

E =
1
2

∑
µ,i

[(1 + yµi) log
1 + yµi
1 + rout

i
+ (1− yµi) log

1− yµi
1− rout

i
]

I measure information content of the output, even less
computation of delta term: g(x) = tanh(x), δi = yi − rout

I more sophisticated training using higher-order gradients: in
MATLAB Levenberg-Marquardt. The relation of such sophistivate
technique to biological learning is,so far, unclear!

I random search→ stochastic processes, stochastic annealing,
genetic algorithms

Self-organizing network architectures

I how many nodes we need? too few→ not good mapping, too
many→ reduction of generalization abilities, how the nodes
should be connected?

I node creation algorithm→ adding more and more nodes
I pruning algorithms→ starting with large number of ones, e.g.

weight decay, wij (t + 1) = wij (t) + δwij − εdecay wij (t)
I genetics algorithm→ vector [0010001] indicating presence of

connection, biological inspiration→ development of major
structure of the central nervous system

2 3 4 5 6 71

0

0.2

0.4

0.6

0.8

1

600040002000

Worst error

Average error

Training iterations

N
et

w
or

k
er

ro
r

Recurrent mapping networks - context units

I Elman net - simple recurrent net, physical back-projections
I short-term memory - input is connected to context units -

remember the inputs from the previous time steps
I training of sequence of inputs e.g. predicting the next output

(time series)

Input nodes Context nodes

Output nodes

Probabilistic MLP
I data classification, nout classes probability of the membership of

the object
I all outputs nodes to 1, rout firing rate of output node∑

i

rout
i = 1

I output layer competing for the output→ collateral inhibitory
connections, strong inhabitation - winner take all

I confidence of membership - soft competition:

rout
i =

erout
i∑

j rout
j

1r in

1rout

2r
in

3r
in

4r
in

2rout

3rout

MLP with softmax output function

1r in

2r
in

3r
in

4r
in

1r out

2r out

3r out

MLP with approximate softmax version

Support Vector Machines

I MLP: good interpolators, bad extrapolaters, local problem
minima, slow convergence

I margin: distance from the middle line to the border, large-margin
classifiers: more robust than percepton

x

x1

2

 Linear large-margine classifier

Margin
I distance of the line to the origins: (θ+1)

|w| , (θ−1)
|w|

I distance between the lines: d = 2
|w| , minimizing weights subject

to constrains

w1x1 + w2x2 − θ = 0
w1x1 + w2x2 − θ = 1
w1x1 + w2x2 − θ = −1

y(wx − θ − 1) < 0

I Lagrange formalism, constraints are added with multiplies α
I LP is quadratic optimization problem, equivalent to dual problem

LD, data points on margine→ support vector

LP =
1
2
|w |2 +

∑
i

αiyi (wxi − θ) + sumiαi

SVM: Kernel trick

I non-linear separable data! Transformation φ(x) = (x , x2), Kernel
function φ)(xi)φ(xj) = K (xi , xj)

I right choice of kernel→ convex optimization problem:

K (xi , xj) = e
(xi ,xj)

2

2σ2

φ(x)

A. Linear not separable case B. Linear separable case

Further Readings
Simon Haykin (1999), Neural networks: a comprehensive foundation, MacMillan

(2nd edition).

John Hertz, Anders Krogh, and Richard G. Palmer (1991), Introduction to the
theory of neural computation, Addison-Wesley.

Berndt Müller, Joachim Reinhardt, and Michael Thomas Strickland (1995), Neural
Networks: An Introduction, Springer

Christopher M. Bishop (2006), Pattern Recognition and Machine Learning,
Springer

Laurence F. Abbott and Sacha B. Nelson (2000), Synaptic plasticity: taming the
beast, in Nature Neurosci. (suppl.), 3: 1178–83.

Christopher J. C. Burges (1998), A Tutorial on Support Vector Machines for
Pattern Recognition in Data Mining and Knowledge Discovery 2:121–167.

Alex J. Smola and Bernhard Schölhopf (2004), A tutorial on support vector
regression in Statistics and computing 14: 199-222.

David E. Rumelhart, James L. McClelland, and the PDP research group (1986),
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, MIT Press.

Peter McLeod, Kim Plunkett, and Edmund T. Rolls (1998), Introduction to
connectionist modelling of cognitive processes, Oxford University Press.

E. Bruce Goldstein (1999), Sensation & perception, Brooks/Cole Publishing
Company (5th edition).

