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Lecture 8: Feed Forward Networks



Digital representation of a letter

A
13 14

23

33

25

35

15

24

34

1 2 3

.

.
0
0
1
.
.
0
1
0
.
.
0
1
0
.
.

<-15

Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y

f : x ∈ Sn
1 → y ∈ Sm

2



Examples given by lookup table

Boolean AND function
x1 x2 y
0 0 1
0 1 0
1 0 0
1 1 1

Look-up table for a non-boolean example function
x1 x2 y
1 2 -1
2 1 1
3 -2 5
-1 -1 7
... ... ...



The population node as perceptron

Update rule: rout = g(wrin) (component-wise: r out
i = g(

∑
j wij r in

j ))
For example: r in

i = xi , ỹ = r out, linear grain function g(x) = x :

ỹ = w1x1 + w2x2
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How to find the right weight values?
Objective (error) function, for example: mean square error (MSE)

E =
1
2

∑
i

(r out
i − yi )

2

Gradient descent method: wij ← wij − ε ∂E
∂wij

= wij − ε(yi − r out
i )r in

j for MSE, linear gain

w

E(w)

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i = r in

i = ξin
i

Calculate rate of the output nodes: r out
i = g(

∑
j wij r in

j )

Compute the delta term for the output layer: δi = g′(hout
i )(ξout

i − r out
i )

Update the weight matrix by adding the term: ∆wij = εδi r in
j



Example: OCR

>> displayLetter(1)
     +++     
     +++     
    +++++    
    ++ ++    
   ++   ++   
  +++   +++  
  +++++++++  
 +++++++++++ 
 +++     +++ 
 +++     +++ 
 +++     +++ 
 +++     +++ 

A.  Training pattern B.  Learning curve C.  Generalization ability
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Example: Boolean function

Σ

x

x1

2

w  = 11

w  = 12

x

x 1

2

x x y
0
0
1
1

0
1
0
1

0
1
1
1

1 2

x x y
0
0
1
1

0
1
0
1

0
1
1
0

1 2

x1

x2

y

?
x

x
1

2

x1

x2

A.  Boolean OR function

B.   Boolean XOR function

x  =10 w  = Θ = 10

w  x  + w  x  = Θ1 21 2



perceptronTrain.m

1 %% Letter recognition with threshold perceptron
2 clear; clf;
3 nIn=12*13; nOut=26;
4 wOut=rand(nOut,nIn)-0.5;
5
6 % training vectors
7 load pattern1;
8 rIn=reshape(pattern1’, nIn, 26);
9 rDes=diag(ones(1,26));

10
11 % Updating and training network
12 for training_step=1:20;
13 % test all pattern
14 rOut=(wOut*rIn)>0.5;
15 distH=sum(sum((rDes-rOut).ˆ2))/26;
16 error(training_step)=distH;
17 % training with delta rule
18 wOut=wOut+0.1*(rDes-rOut)*rIn’;
19 end
20
21 plot(0:19,error)
22 xlabel(’Training step’)
23 ylabel(’Average Hamming distance’)



Percepton as Linear Classifier: ML approach
I Assume a binary classification problem, i.e. S = {s1, s2}.
I One discriminant function g(~x) enough: classify

y =

{
s1, if g(~x) > 0;
s2, otherwise.

I we will estimate ~b, c directly from the given sample
D = {(~x1, y1), (~x2, y2) . . . (~xm, ym)}.

I We want
(
~bt~xi + c

)
> 0 if yi = s1 and

(
~bt~xi + c

)
< 0 otherwise.

I Same as requesting
(
~bt~zi + c

)
> 0 for all zi , where zi = xi if

yi = s1 and zi = −xi otherwise.
I Let formally zn+1

i = 1 ∀i and ~w = [~b, c] (add c as the last
component of ~w).

I Thus we can write simply g(~z) = ~w t~z and request ~w t ~zi > 0 for all
zi .

I Let
E(~w) =

∑
~zi∈M

−~w t ~zi

where M is the set ~zi that are misclassified.



Percepton ML view

I E(~b, c) is always non-negative.
I If E(~w) = 0 then all examples in D are correctly classified and D

is linearly separable. We want to find the minimum of E(~w).
I E(~w) is piece-wise linear. A gradient algorithm can be used to

search a minimum.
I Gradient algorithm: go towards a minimum by making discrete

steps in <n+1 in the direction opposite to the gradient of E(~w).

∇(E(~w)) =

(
∂E(~w)

∂w1
,
∂E(~w)

∂w2
, . . .

∂E(~w)

∂wn+1

)
=
∑
zi∈M

−~z

I The perceptron gradient algorithm:
1. k = 0. Choose a random ~w .
2. k ← k + 1
3. ~w ← ~w + η(k)

∑
zi∈Mk

~z
4. if |ν(k)

∑
zi∈Mk

~z| > θ go to 2
5. return ~w

I η - the learning rate, θ - an error threshold.



Percepton graphical representation
I y(~x) = ~w t~x + w0, y(~xa) = y( ~xb)

I ~xa a ~xb is on decision surface, hence ~w t (~xa − ~xb) = 0)

I w is orthonomal to decision surface, ω0(b) is translation [Bishop]



Percepton learning



Percepton - linear separability
I If the two classes are linearly separable, the perceptron algorithm

will terminate in a finite number of steps with zero training error.
I A problem that is linearly non-separable in <n may be separable

after being transformed to <n′
n′ > n. For example, new

coordinates may contain all quadratic terms:

[x(1), . . . x(n), x2(1), x(1)x(2), x(1)x(3), . . . x2(n)]

I A linear separation method such as the perceptron may be
applied in the extended space, generating nonlinear separation
in the original space.



Percepton - history

I Frank Rosenblatt - HW realization of percepton in 1958

I Learning of simple symbols and alphabet - inspiration by brain
nets

I Character was illuminated by powerful lights, image focused onto
20 x 20 array of cadmium sulphide photocells giving 400 pixel
image

I Patch board - different configuration of input features
I Rack of adaptive weights, each weight rotary variable resistor

driven by electric motor - weights were adjusted automatically by
the elarning algorithm

I MARK 1 computer (Harvard - IBM): 765000 parts, 16 m long, 2.4
m height, 2 m wide, 3 operation per second, multiplication took 6
sec



The multilayer Perceptron (MLP)
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Update rule: rout = gout(woutgh(whrin))

Learning rule (error backpropagation): wij ← wij − ε ∂E
∂wij



The error-backpropagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r 0
i := r in

i = ξin
i

Propagate input through the network by calculating the rates of nodes in
successive layers l : r l

i = g(hl
i ) = g(

∑
j w l

ij r
l−1
j )

Compute the delta term for the output layer: δout
i = g′(hout

i )(ξout
i − r out

i )

Back-propagate delta terms through the network: δl−1
i = g′(hl−1

i )
∑

j w l
jiδ

l
j

Update weight matrix by adding the term: ∆w l
ij = εδl

i r
l−1
j



MLP as universal approximator

I Hidden layer enables realization of complicated non-linear fces
I Each neuron can have its own activation fce
I We suppose that we have only ONE type of activation fce
I QUESTION: Can 3-forward layer approximate any non-linear

function?
I ANSWER: YES- thanks to A.Kolmogorov

Any continuous fce can be implemented by 3-layes net
under assumption of sufficient number of nH hidden
neurons,suitable non-linearities and weights w .



Andrej Kolmogorov

I He constructed p̈erpetuum mobileı̈n high school, his teacher
could not discover the trick

I First he studied history in Moscow university
I He published the first scientific work on realities in Novgorod

area during 15. a 16. centurary
I The biggest contribution in probability field



mlp.m

1 %% MLP with backpropagation learning on XOR problem
2 clear; clf;
3 N_i=2; N_h=2; N_o=1;
4 w_h=rand(N_h,N_i)-0.5; w_o=rand(N_o,N_h)-0.5;
5
6 % training vectors (XOR)
7 r_i=[0 1 0 1 ; 0 0 1 1];
8 r_d=[0 1 1 0];
9

10 % Updating and training network with sigmoid activation function
11 for sweep=1:10000;
12 % training randomly on one pattern
13 i=ceil(4*rand);
14 r_h=1./(1+exp(-w_h*r_i(:,i)));
15 r_o=1./(1+exp(-w_o*r_h));
16 d_o=(r_o.*(1-r_o)).*(r_d(:,i)-r_o);
17 d_h=(r_h.*(1-r_h)).*(w_o’*d_o);
18 w_o=w_o+0.7*(r_h*d_o’)’;
19 w_h=w_h+0.7*(r_i(:,i)*d_h’)’;
20 % test all pattern
21 r_o_test=1./(1+exp(-w_o*(1./(1+exp(-w_h*r_i)))));
22 d(sweep)=0.5*sum((r_o_test-r_d).ˆ2);
23 end
24 plot(d)



MLP for XOR function
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Example 3-layer neural net - XOR problem
I 0

⊕
0 = 0, 1

⊕
1 = 0, 1

⊕
0 = 1, 0

⊕
1 = 1

I −1
⊕
−1 = −1, 1

⊕
1 = −1, 1

⊕
−1 = 1, −1

⊕
1 = 1



Non-linear fce approximation

Fourier transform ANALOGY



Comparision of 2-layer and 3-layer net



MLP, generalization, overfitting
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Validation
I error of training set in monotonic-decreasing fce because of

gradient algorithm optimization
I we divide data to training and validation set We use validation as

stopping criteria (e.g. the first minimum)
I DEMO - Neural Network Toolbox Matlab
http://www.mathworks.com/products/neuralnet/

I netlab -Bishop
http://www1.aston.ac.uk/eas/research/groups/
ncrg/resources/netlab/

http://www.mathworks.com/products/neuralnet/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/


MLP biological plausibility

1. universal approximator→ small number of hidden neurons→
smooth solution & big number of hidden layers in biological
systems

2. problematic training with error-back propagation, some exchange
between postsynaptic and presynaptic neurons is possible,
however

3. inclusion of derivative terms??
4. non-locality of the algorithm, neuron must gather the

back-propagated errors from all other nodes to which it projects



Kernel machine
I better recognition after transformation of feature space x1x2,x2

i ,
x → Θ(x), w → Θ(w)

I the net input of node h =
∑

i (wi ri ) = wr , node in the network,
h = Θ(w)Θ(r) = K (w , r)

I K is kernel function, special case is Gaussian kernel function
K (w , x) = (w−x)2

2δ2 , FITS tuning curve
I Radial basis networks
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Advance learning

I shallow part of errro function, very slow convergence, using
momentum term

∆wij (t + 1) = η
∂E
wij

+ α∆wij (t)

I Acceleration of learning process, other fce than MSE: entropic
error function

E =
1
2

∑
µ,i

[(1 + yµi ) log
1 + yµi
1 + rout

i
+ (1− yµi ) log

1− yµi
1− rout

i
]

I measure information content of the output, even less
computation of delta term: g(x) = tanh(x), δi = yi − rout

I more sophisticated training using higher-order gradients: in
MATLAB Levenberg-Marquardt. The relation of such sophistivate
technique to biological learning is,so far, unclear!

I random search→ stochastic processes, stochastic annealing,
genetic algorithms



Self-organizing network architectures

I how many nodes we need? too few→ not good mapping, too
many→ reduction of generalization abilities, how the nodes
should be connected?

I node creation algorithm→ adding more and more nodes
I pruning algorithms→ starting with large number of ones, e.g.

weight decay, wij (t + 1) = wij (t) + δwij − εdecay wij (t)
I genetics algorithm→ vector [0010001] indicating presence of

connection, biological inspiration→ development of major
structure of the central nervous system
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Recurrent mapping networks - context units

I Elman net - simple recurrent net, physical back-projections
I short-term memory - input is connected to context units -

remember the inputs from the previous time steps
I training of sequence of inputs e.g. predicting the next output

(time series)

Input nodes Context nodes

Output nodes



Probabilistic MLP
I data classification, nout classes probability of the membership of

the object
I all outputs nodes to 1, rout firing rate of output node∑

i

rout
i = 1

I output layer competing for the output→ collateral inhibitory
connections, strong inhabitation - winner take all

I confidence of membership - soft competition:

rout
i =

erout
i∑

j rout
j

1r in

1rout
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3r
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4r
in

2rout

3rout

MLP with softmax output function
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MLP with approximate softmax version



Support Vector Machines

I MLP: good interpolators, bad extrapolaters, local problem
minima, slow convergence

I margin: distance from the middle line to the border, large-margin
classifiers: more robust than percepton

x

x1

2

     Linear large-margine classifier



Margin
I distance of the line to the origins: (θ+1)

|w| , (θ−1)
|w|

I distance between the lines: d = 2
|w| , minimizing weights subject

to constrains

w1x1 + w2x2 − θ = 0
w1x1 + w2x2 − θ = 1
w1x1 + w2x2 − θ = −1

y(wx − θ − 1) < 0

I Lagrange formalism, constraints are added with multiplies α
I LP is quadratic optimization problem, equivalent to dual problem

LD, data points on margine→ support vector

LP =
1
2
|w |2 +

∑
i

αiyi (wxi − θ) + sumiαi



SVM: Kernel trick

I non-linear separable data! Transformation φ(x) = (x , x2), Kernel
function φ)(xi )φ(xj ) = K (xi , xj )

I right choice of kernel→ convex optimization problem:

K (xi , xj ) = e
(xi ,xj )

2

2σ2

φ(x)

A.  Linear not separable case B.  Linear separable case
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