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Lecture 6: Synaptic plasticity and Hebb’s rule



Spike timing dependent plasticity (STDP)
I Bi-Poo experiments: voltage clamp for hippocamal cells in vitro,
→ Excitatory PostSynaptic Current (EPSP)→ critical time
window ∆t = 40ms

I critical window width is much larger, asymmetrical and
symmetrical (for bursting neurons) form of Hebbian plasticity,
inverse correlation in Purkinje cells (inhibitory) in the cerebellum

LTP

LTD

D.

B. LTP

LTD
t      − tpost pre

t      − tpost pre

LTP

LTD

t      − tpost pre

0 

Δw

0 

Δw

0 

Δw

C. LTP

LTD
t      − tpost pre

0 

Δw

E. LTP

LTD

t      − tpost pre

0 

Δw

t        − t 
−80

−80
−60
−20

0
20
40
60

80
100

80400−40

C
ha

ng
e 

in
 E

PS
C

 a
m

pl
itu

de
 [%

]

post pre

A. Spike timing dependent plasticity

[ms]



Synaptic neurotransmitter release probability
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Initial weight dependence

I Bi-Poo experiments: synaptic efficiencies of LTD are proportional
to the INITIAL synaptic strength, δA

A
I LTP: changes of EPSC are largest small initial EPSC amplitudes



Mathematical formulation of Hebbian plasticity - spiking models

wij (t + ∆t) = wij (t) + ∆wij (t f
i , t

f
j ,∆t ; wij ).

∆w±
ij = ε±(w)K±(tpost − tpre)

Spike Timing Dependent Plasticity (SPDP)¿ (i) Exponential plasticity
curve, (ii) Repeated spike pairings induced w UNBOUNDED growth
→ a weight dependent learning rate ε±

∆w±
ij = ε±(w)e∓

tpost−tpre

τ± Θ(±[tpost − tpre]).

Additive rule with hard (absorbing) boundaries:

ε± =

{
a± for wmin

ij ≤ wij ≤ wmax
ij

0 otherwise
,

Multiplicative rule (soft boundaries):

ε+ = a+(wmax − wij )

ε− = a−(wij − wmin). (1)



Hebbian learning in rate (population) models
no spike timings! → plasticity depends on correlation of pre and post
synaptic spikes!

General: ∆wij = ε(t ,w)[fpost(ri )fpre(rj )− f (ri , rj ,w)]

Mnemonic equation (Caianiello): f(w) is weight decay
∆wij = ε(w)[ri rj − f (w)]

Basic Hebb:,fpost linear,fpre linear: ∆wij = εri rj

〈r〉 is average over many trials with different stimuli, if fpost ,fpre is 〈r〉
Covariance rule (plasticity threshold): ∆wij = ε(ri − 〈ri〉)(rj − 〈rj〉)

BCM theory, θM = f (rj ), post!: ∆wij = ε(f BCM(ri ; θ
M)(rj )− f (w))

ABS rule: ∆wij = ε(fABS(ri ; θ
−, θ+)sign(rj − θpre))
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The LIF-neuron noise simulation I

I real neuron with 5000 presynaptic neuron
I 10 % simulation→ 500 Poisson-distributed spike trains (??) with

refractory corrections
I mean firing rate = 20 Hz, after correction 19.3 Hz, refractory

constant 2 ms.
I each presynaptic spike→ EPSP in form of α function (??)
I ω = 0.5→ regular firing, CV = 0.12, average rate 118 Hz.
I ω = 0.25→ irregular firing, CV = 0.58, average rate 16 Hz. The

CV > lower bound found in experiments



The LIF-neuron noise simulation II
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Synaptic scaling and weight distributions
I IF neuron with 1000 excitatory synapses driven by presynaptic

Poisson spike trains with average firing rate of 20 Hz,
∆w±

ij = ε±(w)K±(tpost − tpre) applying additive rule and
asymmetrical Gaussian plasticity windows

I (i) weights set to large values (ii) large frequency firing (see lec4)
(iii) apply additive STDP rule with marginally stronger LTD than
LTP

I increased CV, firing rate reduction, weight BINOMICAL
distribution after 5 mins
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Cross-correlation function
I s(∆t), s = 1 if a spike occurs in ∆t
I star line:C(n) = 0 for regular IF firing 270 Hz, w = 0.015, LTP

occurs as much as LTD
I square line:after Hebb’s learning, IF firing 18 Hz, some

presynaptic spikes elicits post-synaptic spikes
I C < 0, if presynaptic spikes reduce postsynaptic

(anti-correlation) and vice-versa

C(n) = 〈spre(t)spost (t + nδt)〉 − 〈sprespost〉
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Hebbian rate rules on random pattern - weight distribution ??
I Central limit theorem: sum of random variables approaches

Gaussian distribution with ZERO mean and σ
Np

variance (after
1000 runs).

I After learning Np patterns, where ε = 1
Np
→ the width of

distribution does not change with the number of training patterns
I Rates are exponential distributed as in real case (〈r〉log(x)) -

wij =
1√
Np

∑
µ
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Matlab code

I 500 hundred presynaptic nodes, 1 postsynaptic node, 1000
patterns

I matrix notation: ∆w = ba
′
. a firing rate presynaptic and b

postynaptic.
I covariance Hebb’s rule: w=(rPost-ar)*(rPre-ar)’


