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Lecture 6: Synaptic plasticity and Hebb’s rule



Original LTP by Bliss and Lomo, 1973

» Long-lasting changes of synaptic response characteristics

» High frequency-stimulus is applied (plasticity-induced tetanus) —
long-term potentiation(to strengthen, make more potent) (LTP)
average amplitude of EPSP increased

» Long frequency stimulus — long-term depression (LTD)
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Classical LTP and LTD

A. Long term potentiation B. Long term depression
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Hippocampus

» Hippocampus: centre of memory storage, The dentate gyrus is
thought to contribute to the formation of new memories. It is
notable as being one of a select few brainstructures currently
known to have high rates of neurogenesis in adult rats

» Neurons must be plastic

» Experiment: isolated slices of hippocampal tissue placed in
dishes
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LTP experiment
» EXPERIMENTAL confirmation of Hebb’s rule (1949)
» i) single pulse is presented ii) stimulation with burst of pulses:
100 pulses/sec ii) After LTP induced, single pulse stimulation
» Postsynaptic cells must be depolarized to LTP be produced AND
receiving excitatory input - see Associative learning slide.
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NMDA receptors

» N-methyl-D-aspartarte receptor lacated on dendrytic spines of
postsynaptic neurons showing LTP

» i) NMDA receptors are blocked by Mg?* ii) Channel unblocking
after glutamate binding (glucamate is major excitatory transmitter
in hippocampus) AND membrane depolarized (NMDA are
voltage gated) — Mg?* ejection, Ca®* influx
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Ca®* role

» Ca?* changes enzyme activities that influence synaptic strength

» LTP raises sensitivity of non-NMDA glucamate receptors
prompting release of more glucamate
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The calcium hypothesis and modeling chemical pathways
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Morris Water Maze - spatial memory

» i) mice training ii) Chemical blocking of LTP by AP5 impair spatial
learning, keep control group iii) AP5-treated mice significantly
impaired

» i) slices of the hippocampus were taken from both groups ii) LTP
was easily induced in controls, but could not be induced in the
brains of APV-treated rats

» Alzheimer’s disease — cognitive decline seen in individuals with
AD may result from impaired LTP ??
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Spike timing dependent plasticity (STDP)

» Bi-Poo experiments: voltage clamp for hippocamal cells in vitro,
— Excitatory PostSynaptic Current (EPSP) — critical time
window At = 40ms

» critical window width is much larger, asymmetrical and
symmetrical (for bursting neurons) form of Hebbian plasticity,
inverse correlation in Purkinje cells (inhibitory) in the cerebellum

A. Spike timing dependent plasticity
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Synaptic neurotransmitter release probability
High-frequency stimulation
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Initial weight dependence

» Bi-Poo experiments: synaptic efficiencies of LTD are proportional
to the INITIAL synaptic strength, °2

» LTP: changes of EPSC are largest small initial EPSC amplitudes
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Mathematical formulation of Hebbian plasticity - spiking models

wii(t + At) = w;(t) + AW,/(t,,t/,At wj).

AW,./jF = eE(W)KE(t — )

Spike Timing Dependent Plasticity (SPDP);, (i) Exponential plasticity
curve, (ii) Repeated spike pairings induced w UNBOUNDED growth
— a weight dependent learning rate e*

post __ spre
AWE = E(w)eF T O£t — £7)).

Additive rule with hard (absorbing) boundaries:

b

. a:t for Wmm < W,/ < Wmax
€ =
0 otherW|se

Multiplicative rule (soft boundaries):

e = at(w™ —wy)
a (w; —w™). (1)

€



Hebbian learning in rate (population) models
no spike timings! — plasticity depends on correlation of pre and post
synaptic spikes!

General: Awj = e(t, W)[foost (1) fore (1) — F(1i, 17, W)]

Mnemonic equation (Caianiello): f(w) is weight decay
Awj = e(w)[rir — f(w)]

Basic Hebb:, ;s linear, . linear: Aw; = er;r;

(r) is average over many trials with different stimuli, if fyost,fore iS (r)
Covariance rule (plasticity threshold): Aw; = e(r; — (r))(r; — (r}))

BCM theory, M = f(r;), post!: Awj = ¢(fBM(r;; 0M)(r;) — f(w))
ABS rule: Awj; = e(fags(ri; 0,07 )sign(r; — 60P™))

Function used in BCM rule




The LIF-neuron noise simulation |

» real neuron with 5000 presynaptic neuron

» 10 % simulation — 500 Poisson-distributed spike trains (??) with
refractory corrections

» mean firing rate = 20 Hz, after correction 19.3 Hz, refractory
constant 2 ms.

» each presynaptic spike — EPSP in form of « function (??)
» w = 0.5 — regular firing, Cy = 0.12, average rate 118 Hz.

» w = 0.25 — irregular firing, Cy = 0.58, average rate 16 Hz. The
Cy > lower bound found in experiments



The LIF-neuron noise simulation Il

A. Time varying input
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Synaptic scaling and weight distributions

» IF neuron with 1000 excitatory synapses driven by presynaptic
Poisson spike trains with average firing rate of 20 Hz,
Aw; = e5(w)K+£(t — ) applying additive rule and
asymmetrical Gaussian plasticity windows

» (i) weights set to large values (ii) large frequency firing (see lec4)
(iii) apply additive STDP rule with marginally stronger LTD than
LTP

» increased CV, firing rate reduction, weight BINOMICAL
distribution after 5 mins
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Cross-correlation function

» s(At), s =1 if a spike occurs in At

» star line:C(n) = 0 for regular IF firing 270 Hz, w = 0.015, LTP
occurs as much as LTD

» square line:after Hebb’s learning, IF firing 18 Hz, some
presynaptic spikes elicits post-synaptic spikes

» C < 0, if presynaptic spikes reduce postsynaptic
(anti-correlation) and vice-versa

C(n) = (sP®(t)sP*!(t + ndt)) — (sPresPost)
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Hebbian rate rules on random pattern - weight distribution ??
» Central limit theorem: sum of random variables approaches
Gaussian distribution with ZERO mean and Nlp variance (after
1000 runs).
» After learning N, patterns, where ¢ = Nip — the width of
distribution does not change with the number of training patterns
» Rates are exponential distributed as in real case ((r)log(x)) -
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Matlab code

» 500 hundred presynaptic nodes, 1 postsynaptic node, 1000
patterns

» matrix notation: Aw = ba . afiring rate presynaptic and b
postynaptic.

» covariance Hebb’s rule: w=(rPost-ar)*(rPre-ar)’

%% Weight distribution of Hebbian synapses in rate model
clear; clf; %clear workspace and figure

nn=500; npat=1000; %*number of nodes and patterns
%% Random pattern; firing rates are exponential distributed
ar=40; %average firing rate of pattern

rPre =-ar.*log(rand(nn,npat)); %expo
rPost=-ar.*log(rand(l,npat)); fexpo
%% Weight matrix
w=(rPost-ar)*(rPre-ar)'; %Hebbian covariance rule
w=w/sqgrt(npat); %standard scaling to keep variance constant
%% Histogram plotting

¥x==10:1:10;

[n,x])=hist({w/nn,x); %calculate histogram

n=n/sum(n); %normalizaton to get probability distribution
h=bar(x,n); set(h, facecolor', none');
%% Fit normal ditribution to data

al=[0 5];

a=lsqgcurvefit( normal',al,x,n);

nZ2=normal({a,=-15:0.1:15);

hold on; plot(=15:0.1:15,n2, 'c")

tial distr. pre rates
tial distr. post rate



