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Lecture 6: Synaptic plasticity and Hebb’s rule



Original LTP by Bliss and Lomo, 1973

I Long-lasting changes of synaptic response characteristics
I High frequency-stimulus is applied (plasticity-induced tetanus)→

long-term potentiation(to strengthen, make more potent) (LTP)
average amplitude of EPSP increased

I Long frequency stimulus→ long-term depression (LTD)



Classical LTP and LTD

A.  Long term potentiation
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B.  Long term depression



Hippocampus

I Hippocampus: centre of memory storage, The dentate gyrus is
thought to contribute to the formation of new memories. It is
notable as being one of a select few brainstructures currently
known to have high rates of neurogenesis in adult rats

I Neurons must be plastic
I Experiment: isolated slices of hippocampal tissue placed in

dishes



LTP experiment
I EXPERIMENTAL confirmation of Hebb’s rule (1949)
I i) single pulse is presented ii) stimulation with burst of pulses:

100 pulses/sec ii) After LTP induced, single pulse stimulation
I Postsynaptic cells must be depolarized to LTP be produced AND

receiving excitatory input - see Associative learning slide.



NMDA receptors
I N-methyl-D-aspartarte receptor lacated on dendrytic spines of

postsynaptic neurons showing LTP
I i) NMDA receptors are blocked by Mg2+ ii) Channel unblocking

after glutamate binding (glucamate is major excitatory transmitter
in hippocampus) AND membrane depolarized (NMDA are
voltage gated)→ Mg2+ ejection, Ca2+ influx



Ca2+ role
I Ca2+ changes enzyme activities that influence synaptic strength
I LTP raises sensitivity of non-NMDA glucamate receptors

prompting release of more glucamate



The calcium hypothesis and modeling chemical pathways
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Morris Water Maze - spatial memory

I i) mice training ii) Chemical blocking of LTP by AP5 impair spatial
learning, keep control group iii) AP5-treated mice significantly
impaired

I i) slices of the hippocampus were taken from both groups ii) LTP
was easily induced in controls, but could not be induced in the
brains of APV-treated rats

I Alzheimer’s disease→ cognitive decline seen in individuals with
AD may result from impaired LTP ??



Spike timing dependent plasticity (STDP)
I Bi-Poo experiments: voltage clamp for hippocamal cells in vitro,
→ Excitatory PostSynaptic Current (EPSP)→ critical time
window ∆t = 40ms

I critical window width is much larger, asymmetrical and
symmetrical (for bursting neurons) form of Hebbian plasticity,
inverse correlation in Purkinje cells (inhibitory) in the cerebellum
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Synaptic neurotransmitter release probability
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Initial weight dependence

I Bi-Poo experiments: synaptic efficiencies of LTD are proportional
to the INITIAL synaptic strength, δA

A
I LTP: changes of EPSC are largest small initial EPSC amplitudes



Mathematical formulation of Hebbian plasticity - spiking models

wij (t + ∆t) = wij (t) + ∆wij (t f
i , t

f
j ,∆t ; wij ).

∆w±
ij = ε±(w)K±(tpost − tpre)

Spike Timing Dependent Plasticity (SPDP)¿ (i) Exponential plasticity
curve, (ii) Repeated spike pairings induced w UNBOUNDED growth
→ a weight dependent learning rate ε±

∆w±
ij = ε±(w)e∓

tpost−tpre

τ± Θ(±[tpost − tpre]).

Additive rule with hard (absorbing) boundaries:

ε± =

{
a± for wmin

ij ≤ wij ≤ wmax
ij

0 otherwise
,

Multiplicative rule (soft boundaries):

ε+ = a+(wmax − wij )

ε− = a−(wij − wmin). (1)



Hebbian learning in rate (population) models
no spike timings! → plasticity depends on correlation of pre and post
synaptic spikes!

General: ∆wij = ε(t ,w)[fpost(ri )fpre(rj )− f (ri , rj ,w)]

Mnemonic equation (Caianiello): f(w) is weight decay
∆wij = ε(w)[ri rj − f (w)]

Basic Hebb:,fpost linear,fpre linear: ∆wij = εri rj

〈r〉 is average over many trials with different stimuli, if fpost ,fpre is 〈r〉
Covariance rule (plasticity threshold): ∆wij = ε(ri − 〈ri〉)(rj − 〈rj〉)

BCM theory, θM = f (rj ), post!: ∆wij = ε(f BCM(ri ; θ
M)(rj )− f (w))

ABS rule: ∆wij = ε(fABS(ri ; θ
−, θ+)sign(rj − θpre))
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The LIF-neuron noise simulation I

I real neuron with 5000 presynaptic neuron
I 10 % simulation→ 500 Poisson-distributed spike trains (??) with

refractory corrections
I mean firing rate = 20 Hz, after correction 19.3 Hz, refractory

constant 2 ms.
I each presynaptic spike→ EPSP in form of α function (??)
I ω = 0.5→ regular firing, CV = 0.12, average rate 118 Hz.
I ω = 0.25→ irregular firing, CV = 0.58, average rate 16 Hz. The

CV > lower bound found in experiments



The LIF-neuron noise simulation II
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Synaptic scaling and weight distributions
I IF neuron with 1000 excitatory synapses driven by presynaptic

Poisson spike trains with average firing rate of 20 Hz,
∆w±

ij = ε±(w)K±(tpost − tpre) applying additive rule and
asymmetrical Gaussian plasticity windows

I (i) weights set to large values (ii) large frequency firing (see lec4)
(iii) apply additive STDP rule with marginally stronger LTD than
LTP

I increased CV, firing rate reduction, weight BINOMICAL
distribution after 5 mins
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Cross-correlation function
I s(∆t), s = 1 if a spike occurs in ∆t
I star line:C(n) = 0 for regular IF firing 270 Hz, w = 0.015, LTP

occurs as much as LTD
I square line:after Hebb’s learning, IF firing 18 Hz, some

presynaptic spikes elicits post-synaptic spikes
I C < 0, if presynaptic spikes reduce postsynaptic

(anti-correlation) and vice-versa

C(n) = 〈spre(t)spost (t + nδt)〉 − 〈sprespost〉
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Hebbian rate rules on random pattern - weight distribution ??
I Central limit theorem: sum of random variables approaches

Gaussian distribution with ZERO mean and σ
Np

variance (after
1000 runs).

I After learning Np patterns, where ε = 1
Np
→ the width of

distribution does not change with the number of training patterns
I Rates are exponential distributed as in real case (〈r〉log(x)) -

wij =
1√
Np
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Matlab code

I 500 hundred presynaptic nodes, 1 postsynaptic node, 1000
patterns

I matrix notation: ∆w = ba
′
. a firing rate presynaptic and b

postynaptic.
I covariance Hebb’s rule: w=(rPost-ar)*(rPre-ar)’


