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Lecture 4: Associators and synaptic plasticity



PSP and AP - Supplement of lec4:LIF-neuron noise simulation II

From Buracas et al. 1998



Activation function
I IF neuron driven by Iext with normal pdf→ stochastic differential

equation
I t f is random variable
I average firing rate

r̄ = (t ref + τm

∫ ϑ−RIext/σ

vres−RIext/σ

)
√

(π)ev2
[1 + erf (v)dv ])−1



The Izhikevich neuron I

dv(t)
dt

= 0.04v2 + 5v + 140− u + I(t)

du(t)
dt

= a(bv − u)

v(v > 30) = c and u(v > 30) = u + d
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A.  Fast spiking B.  Regular spiking C.  Chattering (bursting)



The Izhikevich neuron II



McCulloch-Pitts neuron

I first model of neuron, A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics 5:115-133,
1943

I 1958 - percepton by Rosenblatt
I heavy side function as transfer (activation) function, simple

logical OR, AND

h =
∑

i

x in
i

xout =

{
1 if h > Θ
0 otherwise



The firing rate hypothesis
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 Tuning curve of V1 neuron in cat



History: Adrian

I Sir Edgarda Adriana (Nobel price for medicine - 1932)
http://nobelprize.org/nobel_prizes/medicine/
laureates/1932/adrian-bio.html

http://nobelprize.org/nobel_prizes/medicine/laureates/1932/adrian-bio.html
http://nobelprize.org/nobel_prizes/medicine/laureates/1932/adrian-bio.html


All or none coding

I top:tungsten electrode in fly’s brain, middle: low frequency
removal, bottom: spikes



Correlation coding
A. Stimulus envelope
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B. Rates of individual spike trains

C. Spike-triggered rate

From DeCharms and Merzenich 1996



Integrator or coincidence detector?

A.  Perfect integrator B.   Coincidence detector

v(t)  v(t)

t t
Spike
trains

Stim.

Trial

100
0

Spikes
  s

0.5 s

A.  Constant stimulus B.  Rapidly changing stimulus

Time Time 

From Buracas et al. 1998



Neuronal music

http://cns.iaf.cnrs-gif.fr/alain_music.html

http://cns.iaf.cnrs-gif.fr/alain_music.html


Rate codes

I Spike count - average over time
I Spike density - average over several trial:

peri-stimulus-timehistogram (PSTH)
I Population activity - organization of many neurons in columns

cells. Idealized situations - neurons with the same properties.

t

ΔT



Population model

a(t) =
numberofspikesin∆T

∆T
=

1
∆T

∫ t+∆T/2

t−∆T/2
δ(t

′
− t f )dt

′

A(t) = lim
∆T→0

numberofspikesinpopulationofsizeN
N

= lim
∆T→0

1
∆T

∫ t+∆T/2

t−∆T/2

1
N

N∑
i=1

δ(t
′
− t f )dt

′



Population dynamics
For slow varying input (adiabatic limit), when all nodes do practically
the same, same input, etc (Wilson and Cowan, 1972):

τ
dA(t)

dt
= −A(t) + g(RIext(t)). (1)

Gain function:
g(x) =

1
t ref − τ log(1− 1

τx )
, (2)
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A.  Activation function for population
      average in adiabatic limit  

B.  Activation function of hippocampal 
      pyramidal neuron 



Other gain functions

Type of 
function  

Graphical Mathematical formula MATLAB implementation

 
Linear 

 
 

 
 

X 

 
Step   

floor(0.5*(1+sign(x))) 

 
Threshold - 

linear 

  
 

x.*floor(0.5*(1+sign(x))) 
 

 
Sigmoid 

 

 

 
 

1./(1+exp(-x)) 

 
Radial-
basis 

 
 

 
 

exp(-x.^2) 

 

g lin (x ) = x

g step (x )= 1
0

if x > 0
elsewher e

g theta (x ) = x  (x )

g sig = 1
1+exp(  x )

{
Θ

ggauss = exp(  x 2)

(x )

(x )

represent.



SIMULATION - Fast population response

I Simulation with 1000 independent (NOT CONNECTED) IF
neurons:Iext = Iext + η, η ∈ N(0,1), τm = 10 ms,ϑ = 10 mV

I Switching from RIext = 11 mV at t = 100 ms to RIext = 16 mV
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New imaging method - Clarity - Nature April 2013



Learning what is is?



Learning what is is?



Action-perception loop



Types of plasticity

I Structural plasticity is the mechanism describing the
generation of new connections and thereby redefining the
topology of the network.

I Functional plasticity is the mechanism of changing the strength
values of existing connections.



Hebbian plasticity

”When an axon of a cell A is near enough to excite
cell B or repeatedly or persistently takes part in firing it,
some growth or metabolic change takes place in both
cells such that A’s efficiency, as one of the cells firing B,
is increased.”

Donald O. Hebb, The organization of behavior, 1949
See also Sigmund Freud, Law of association by simultaneity, 1888
Santiago Ramn y Cajal - memories might instead be formed by
strengthening the connections between existing neurons to improve
the effectiveness of their communication, 1894



Possible neuronal mechanisms sub-serving learning and memory



Synaptic mechanism



Association

r in
i

wi r out

Neuron model: In each time step the model neurons fires if∑
i wi r in

i > 1.5
Learning rule: Increase the strength of the synapses by a value
∆w = 0.1 if a presynaptic firing is paired with a postsynaptic firing.



Associative learning
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Features of associators and Hebbian learning

I Pattern completion and generalization, recall from partial input,
overlap between input and trained pattern (recognition of noisy
numbers)

I Prototypes and extraction of central tendencies, training on many
similar but not equivalent examples (individual face, many
common features in all faces)

I Graceful degradation and fault tolerance (loss of synapses or
whole neurons)



Long term potentiaition



Hebbian model



How memory is stored?
I Connectionist modeling of memory, one neural network

(associator) for visual and olfactory system!
I machine learning theory of neural networks -e.g. back

propagation principle



Original LTP by Bliss and Lomo, 1973

I Long-lasting changes of synaptic response characteristics
I High frequency-stimulus is applied (plasticity-induced tetanus)→

long-term potentiation(to strengthen, make more potent) (LTP)
average amplitude of EPSP increased

I Long frequency stimulus→ long-term depression (LTD)



Classical LTP and LTD

A.  Long term potentiation
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B.  Long term depression



Hippocampus

I Hippocampus: centre of memory storage, The dentate gyrus is
thought to contribute to the formation of new memories. It is
notable as being one of a select few brainstructures currently
known to have high rates of neurogenesis in adult rats

I Neurons must be plastic
I Experiment: isolated slices of hippocampal tissue placed in

dishes



LTP experiment
I EXPERIMENTAL confirmation of Hebb’s rule (1949)
I i) single pulse is presented ii) stimulation with burst of pulses:

100 pulses/sec ii) After LTP induced, single pulse stimulation
I Postsynaptic cells must be depolarized to LTP be produced AND

receiving excitatory input - see Associative learning slide.



NMDA receptors
I N-methyl-D-aspartarte receptor lacated on dendrytic spines of

postsynaptic neurons showing LTP
I i) NMDA receptors are blocked by Mg2+ ii) Channel unblocking

after glutamate binding (glucamate is major excitatory transmitter
in hippocampus) AND membrane depolarized (NMDA are
voltage gated)→ Mg2+ ejection, Ca2+ influx



Ca2+ role
I Ca2+ changes enzyme activities that influence synaptic strength
I LTP raises sensitivity of non-NMDA glucamate receptors

prompting release of more glucamate



Morris Water Maze - spatial memory

I i) mice training ii) Chemical blocking of LTP by AP5 impair spatial
learning, keep control group iii) AP5-treated mice significantly
impaired

I i) slices of the hippocampus were taken from both groups ii) LTP
was easily induced in controls, but could not be induced in the
brains of APV-treated rats

I Alzheimer’s disease→ cognitive decline seen in individuals with
AD may result from impaired LTP ??



New spines - after , before learning experiment



the 2-photons microscope enable viewing spines in living brain
tissue



Imaging dendritic spines in the living brain



Spines appear and disapper frequently



Neurogenesis



New cells in Morris Water Maze experiment



Human Brain - Hippocampus



Implications - desease



London Taxi Drivers
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