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Introduction

Computational cognitive modeling

Computational cognitive modeling

= simulations of complex mental processes in different areas of cognition, the goal - to

understand, describe, model and predict observed human behavior

Cognition

=mental process of knowing, including aspects such as awareness, perception, reasoning and

judgement

Latin word cognitio: -co (intensive) + nosecere (to learn)

Modeling

Data never speak for themselves, require a model to be understood and explained

Several alternative models — > compare — quantitative evaluation and intellectual judgement
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Introduction

Motivation
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Introduction

Motivation

Brain mass as percentage of

(extrapolated) body mass La nguage
25%
+ & africanus
A A boisei
= A af;
200% | |+ rcnai Amo sapens . Technology
* A& robustus ra
S, oo
H hakili .
o 15% { | A1 hexdabargensis . s Ml Art, culture, high tech
S » Hotmo sapiens + % . . i tet
1] + Neandental R + e
4 I 2
o . * P
1.0% LY
- § L1y, s
1 * H
- +
0.5%
0.0% : : : . . . !
38 3 25 2 15 1 0s o
Age (mya)
i ; . Bio)Dat
Flgure: Brain mass: Chart by Nick Matzke

a Stépanova Neuroinformatics: Computational cognitive modeli



Introduction

Motivation
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Introduction

Motivation

Movement is essential for perceptual learning, brain doesn’t consist of separated neurons

@ Held, Hein (1963): Movement-produced stimulation in the visually guided behavior
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Introduction

Motivation

John Langford:

“A human brain has about 10'® synapses which operate at about 10? per second implying

about 10%" bit ops per second”

So.. A transcription of 1 second of brain activity at the neural spike level would fill up about 40,000 ordinary 300Gb hard drives
...and consumes 20% of body’s oxygen (approx 1.3 kg)

Is it worth?

@ Kandel (1995)
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Introduction

Processing information
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Introduction

Internalized representations of world

Cat Monkey Human

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Introduction

Multimodal association - creating internal representations

nguistic input
(language

visual input
(cognition)

GigDD
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Cognitive models

Traditional models of cognition:

— ,connectionism” adaptivity Combinatorical
— ,rule-based” (Minsky 1968, a priori explosion or

rules) computational
— ,parametricmodel-based” adaptivity+ complexity

Neural and biological plausability
Parametric X nonparametric methods

Parametric model-based models - Parameters can capture variablities and
uncertainities in the data (pdf)

Physical theory of mind: + adaptivity + ability of computationin
the real time
S10)V4D)
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Cognitive models

Cognitive architectures - Marr's levels of abstraction

levels of abstraction

Computational: What are the abstract inference problems that the mind needs to solve,
and what are the solutions? Bayesian parametric modeling

Algorithmic: What information and processing steps are followed to arrive at the solutions?
Connectionism

Implementation: How does the brain carry out these operations?

Gigpd

@ Marr, D (1982). Vision. A Computational Investigation into the Human Representationrand Processing of Visual
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Cognitive models

Cognitive architectures - Marr's levels of abstraction

Marr’s levels of abstraction

Computational: What are the abstract inference problems that the mind needs to solve,
and what are the solutions? Bayesian parametric modeling
Algorithmic: What information and processing steps are followed to arrive at the solutions?

Connectionism

Implementation: How does the brain carry out these operations?

Sun’'s levels

Sociological level - inter-agent processes, collective behavior of agents

Psychological level - individual behavior of agents
Componential level - intra-agent processes, modular construction of agents

Physiological level - biological implementation

~——
@ Marr, D (1982). Vision. A Computational Investigation into the Human Representationiand Processing of Visual
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Cognitive models

Disiderata - Cognitive architectures

Flexibility
Adaptivity
Autonomy
Self-awarness

Newell (1990) Unified theories of Operation in real-time and in complex environment

Usage of symbol and abstractions
cognition Usage of language
Learning from environment
Acquiring capabilities through development,
Be realizable as a neural system

Be constructable by an embryological growth process

Arise through evolution Bvo DAI
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Cognitive models

Disiderata - Computational cognitive neuroscience model

The neuroscience ideal

A CCN model should not make any assumptions that are known to contradict the current neuroscience literature.

The simplicity heuristic

No extra neuroscientific detail should be added to the model unless there are data to test this component of the model or the

model cannot function without this detail.

The Set-in-Stone Ideal

Once set, the architecture of the network and the models of each individual unit should remain fixed throughout all applications.

The Goodness-of-Fit Ideal

A CCN model should provide good accounts of behavioral and at least some neuroscience data.

@ G. F. Ashby and S. Helie(2011). A tutorial on computational cognitive neuroscience: Modeling the neurodynami éz’—h

cognition
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Cognitive models

Functionalism
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Cognitive models

Connectionism

Two ideas

Two different ways of thinking
about cognition:

— Connectionism: the mind is
built from the brain, a physical
system built out of massively
parallel networks of simple
processors (neurons)

— What kind of behaviours does ==
such a network produce? |

The basic components from
which the concept learning
system needs to be constructed
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Cognitive models

Similarities and differences

Similarities and differences

Connectionists and functionalists agree on lots of
things
— Form of the mental representation is critical
— The nature of human induction is central
— Learning is a cool topic

We differ on one very big question

— Are we more interested in the kind of statistical inference
performed by the mind (a question of why), or what the
brain does to implement the inferences (a question of
how)?

— Connectionists operate at the algorithmic level, while ?"oﬁDd)
functionalists operate at the computational level
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Cognitive models

The challange

How do we generalize successfully from very limited data?

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Bayes rule

For any hypothesis h and data d,

Posterior Likelihood Prior
probabi{y l / probability
d|h)p(h
p(h|dy=—P ){7( )’
>, p(d|h)p(h)
h'eH
AN

Sum over space
of alternative hypotheses @
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Bayesian approach

Why Bayes?

* The problem of induction
— How does the mind form inferences, generalizations, models or theories
about the world from impoverished data?
* Inductionis ubiquitousin cognition
— Vision (+ audition, touch, or other perceptual modalities)
— Language (understanding, production)
— Concepts {semantic knowledge, “common sense”)
— Causal learning and reasoning
— Decision-making and action (production, understanding)
« A unifying framework for explaining cognition.
— How people can learn so much from such limited data.
— Strong quantitative models with minimal ad hoc assumptions.
— Why algorithmic-level models work the way they do.

* A framework for understanding how structured knowledge and
statistical inference interact.

How structured knowledge guides statistical inference, and may itself be
acquired through statistical means.

— What forms knowledge takes, at multiple levels of abstraction.

= What knowledge must be innate, and what can be learned.

— How flexible knowledge structures may grow as required by the data, ‘gwﬁDd )

with complexity controlled by Occam'’s razor.

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Bayesian approach

Examples - Learning word meanings

Whole-object principle cricren
.. Shape bias
Prmmples Taxonomic principle
Contrast principle
l Basic-level bias

Probabilty of
generalization

0
Eramples: 1 3Sub.  3basic 3 super

Bl subordinate matches
Superordinate level

Structure

basic matches
3 superordnate matches
Basic level

Subordinate level

‘fep” *fep” “dax’ ‘zoog’ ‘“gazzer’ m
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Bayesian approach

Examples - Vision as probabilistic parsing

[ scene Sl
objects (] A
| mle
parsing graph /1 mle Ts
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surfaces
configuration
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image
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Bayesian approach

Examples - Vision as probabilistic parsing
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Bayesian approach

Examples - Grammar

Universal Grammar

Hierarchical phrase structure

grammars (e.g., CFG, HPSG, TAG)
l P(grammar | UG)

Grammar S—>NPVP
NP — Det[Adj] Noun[RelClause]
RelClause —[Rel] NPV
P(phrase structure | grammar) VP~ VP NP
VP — Verb
S
Phrase structure L
NP \P/\P
P(utterance | phrase structure) |
Pronoun Verb Article Noun
1 1 1 1
Utterance shoot

the wumpus
| P(speech | utterance)

Speech signal W MM%WW

Karla St&panova
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Bayesian approach

Examples - Causal learning and reasoning

Causal learning and reasoning

Principles Classes: (R, D, S} (Risks, Diseases, Symptoms) Obijects can activate Machines
Causal laws: R D, DS Activation requires contact
Machines are (near) deterministic
Structure

Patient 1: Stressful lifestyle
t Pain
Data Patient 2: Smoking
Coughing
Patient 3: Working in factory
Chest Pain
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Examples - M

priors

responsibilities (posteriors)

Bayesian approach

symbolic representation

of tasks e.g. goal

mid-level representation

e.g. sequences of elements

low level dynamics
e.g. elements of

movements

Karla St&panova
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Bayes rule

For any hypothesis h and data d,

Posterior Likelihood Prior
probabi{y l / probability
d|h)p(h
p(h|dy=—P ){7( )’
>, p(d|h)p(h)
h'eH
AN

Sum over space
of alternative hypotheses @
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Bayesian approach

Bayes rule - Priors

Prior knowledge about the world — > interpret data in the case of the uncertainity
Prediction - the more uncertain the data, the more the prior should influence the
interpretation

Priors should reflect the statistics of the sensory world
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Coin flipping

Coin flipping

HHHHH
HHTHT

What process produced these sequences?

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Coin flipping

Coin flipping

Contrast simple hypotheses:
h1l: “fair coin”, P(H) = 0.5
h2: “always heads”, P(H) = 1.0
Bayes’ rule:

P(h|d) = P(h)P(d|h)
>, P(hi)P(d|hi)

With two hypotheses, use odds form

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Coin flipping

Coin flipping

Comparing two simple hypotheses

PH,|D) _ POOIH) , PH)
P(H,|D) P(D|H)) P(H>)

D: HHTHT
H,, H,: “fair coin”, “always heads”
P(D|H) = 1/2° P(H))=  999/1000
P(D|H;) = 0 P(H,)=  1/1000
P(H,|D) / P(H,|D) = infinity i
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Coin flipping

Coin flipping

Comparing two simple hypotheses

PH,|D) _ POOIH) , PH)
P(H,|D) P(D|H)) P(H>)

D: HHHHH

H,;, H,: “fair coin”, “always heads”

P(D|H)= 1/2° PH) = 999/1000

P(D\H,)= 1 P(H) = 1/1000
P(H,|D)/ P(H,|D) =30
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Coin flipping

Coin flipping

Model selection

* Assume hypothesis space of possible models:

©® 6 e o\o

Fair coin: P(H) = P(H) = Hidden Markov model:
S; € {Fair coin, Trick coin}

¢ Which model generated the data?
— requires summing out hidden variables

— requires some form of Occam’s razor to trade off
complexity with fit to the data.

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Coin flipping

Coin flipping

Parameter estimation vs. Model selection
across learning and development

* Causality: learning the strength of a relation vs. learning the
existence and form of a relation

* Language acquisition: learning a speaker's accent, or
frequencies of different words vs. learning a new tense or
syntactic rule (or learning a new language, or the existence of
different languages)

* Concepts: learning what horses look like vs. learning that there
is a new species (or learning that there are species)

* Intuitive physics: learning the mass of an object vs. learning
about gravity or angular momentum

* Intuitive psychology: learning a person’s beliefs or goals vs.
learning that there can be false beliefs, or that visual access is
valuable for establishing true beliefs

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Coin flipping

Coin flipping

Comparing simple and complex hypotheses

* P(H) = Bis more complexthan P(H) = 0.5 in two
ways:
— P(H) = 0.5 is a special case of P(H) = 0
— for any observed sequence X, we can choose @such
that X is more probable than if P(H) = 0.5
* How can we deal with this?
— Some version of Occam’s razor?

— Bayes: automatic version of Occam’s razor follows
from the “law of conservation of belief”.

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Coin flipping

Coin flipping

s
<

Y pD=d|M) =1 M,
alldeD 025

M, 0®

X

p(D
=

D
Observed data ‘
Ms n ¢ &
p(D|M)= p(y|x.M) VAt
[L7
= [ pCrIx.0.Mp@ MYd0 | | ,,
[assume Gaussian parameter priors, Gaussian likelihoods (noise)] ‘ ‘ @}
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Concepts and categories

Concepts and categories

The fundamental problem

,,-’.

We easily recognise all
these belonging to a
category of “birds”, but

they aren’t in any obvious

sense “the same” as each

other
On what basis do we decide to refer to these different ‘j
things as being examples of the same kind of entity? @Pz‘f
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Concepts and categories

Concepts and categories

Concepts, Categories and Knowledge

Concepts versus categories
— A “concept” is a mental representation

— A “category” is a group of things (in the world)

The reason for having concepts

— No two things in life are ever identical. All beliefs about the
present and the future are necessarily inductions.

— Concepts (and knowledge more generally) exist in order to
allow us to function in spite of this. !;J\P:‘}
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Concepts and categories

Concepts - necessity and sufficiency

The classical theory

The theory that most people intuitively have, and
that the field began with

Categories are defined by a set of individually
necessary and collectively sufficient
“features” (i.e., rules)

— Necessity: If any one of these features is missing, it is
definitely not a member of the category

— Sufficiency: If all of them are present, then it
definitely is a member of the category. oD

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Concepts and categories

Concepts - necessity and sufficiency

This may work for some concepts!

... But most others are quite difficult to come up with a
definition for!

has a ball involved... involves running... what  involves exertion... what
what about: about: about:

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Concepts and categories

Concepts - graded membership

Graded membership

Graded membership: category members vary widely in
terms of typicality

atypical

typical

-
S

o

3%

3

§5 \

£ * )
5 .

§, whale iguana dog cat bird spider QMD:AE
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Concepts and categories

Categories

Family resemblance

A category is a statistical
ensemble of features: none
are necessary, and no
collection is sufficient...

But items that possess
more of these features
are treated as better
members of the
category

Karla St&panova

BALL SPORTS

BAT & BALL SPORTS

ericket racquet ball |
baseball || squash
Australian touch
nues footpall | Voleybal shet put football
i sychronized skate
cheeriesdnd | “gyimming marathon boarding

GLYHPIC SPORTS

TEAM SPORTS

INDAVIDUAL SPORTS

correlations between “number of category
features possessed by an item” and “how typical
the item is of the category”:

furniture (.88)
vehicle (.92)
fruit (.85)
vegetable (.84)
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Simplest distribution=Gaussian

Multivariate Gaussians

P o) = el (e fof 7

mean variance/covariance matrix

1 :
px |13 = WGXP{--(X e E -2

Lo (1 o8
Z:[ko o.zsj 0.8 1 (DW

[\l
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Bayesian inference

Probability

0.9

0.8

0.7

061

05

0.4t

Bayesian inference

P(x|c)P(c)
P I S AP P
M Y IBI

POIA)
P(x{B)
—PAl)
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Mixture of models

Probability

Mixture distributions

mixture distribution

plx,16)=2p(x, ¢, 0P(c,[ )

i mixture
weights
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A chicken and egg problem

If we knew which cluster the observations were from we could find the distributions
this is just density estimation

If we knew the distributions, we could infer which cluster each observation came
from

this is just categorization

Karla Stépanova Neuroinformatics: Computational cognitive modeling



MFT

Modeling fields theory and Dynamic logic

Modeling fields theory (MFT): a mathematical apparatus of fuzzy adaptive logic for Aristotelian forms represented as dynamic
n n K

neural fields, based on dynamic equations which maximize AZ-similarity AZ — LL = 3= li(x;) = 3= log 3= I(x;|k;)
i=1 =1 j=1

(/(x;| kj) - conditional partial similarities, adequate to conditional pdf)

B[]
JE!E-

During model estimation, adaptive fuzzy membership functions f(k;|x;, ekj) are computed from /(x;| k;):

fkjlxi, @) = 10xi[ky) /1(xi) = rig-1(xi 1K)/ Do kg lxilkyr)

ki1 €K ! (EwADAI)

Neuroinformatics: Computational cognitive modeling



Fuzzy logic

* Lower computational complexity
» Adaptive class membership

studena tepla horka

teplota et
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MFT-dynamics

*  Dynamic creation of the relationships between internal representations and the world
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MFT-dynamics

*  Dynamic creation of the relationships between internal representations and the world

® o
®

* Deterministic concepts
* Low uncertainity about class

—

« Fuzzy forms

* Class membership with high fuzziness membersl_ﬂp )
. . . * Models with fixed parameter
* A priori models with very uncertain values

parameters
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MFT-dynamics

*  Dynamic creation of the relationships between internal representations and the world

® o
®

* Deterministic concepts
* Low uncertainity about class

—

« Fuzzy forms

* Class membership with high fuzziness membersl_ﬂp )
. . . * Models with fixed parameter
* A priori models with very uncertain values

parameters

* Heterohierarchical structure—many interative loops whichinclude different levels of

processing m

+ In each moment, many concepts (agents, objects) compete for their evidence

Karla Stépanova Neuroinformatics: Computational cognitive modeling



MFET-similarity

* Asociation(segmentation) © array of input data x with objects= division of
inputs to subsets which are related to the given objects

I(n| k) — partial similarity of the point n with
model k
f(k| n) — membership of point n to model k

I(x,]1)=0.9
I(x,]2)=0.2
I(%,]1)=0.01
I(x]2)=0.3
£(1]x,)=0.9/(0.9+0.01)=1 2D
£(2%,)=0.3/(0.3+0.2)=0.6 Q\;‘}
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MFET-similarity

* Asociation(segmentation) © array of input data x with objects= division of
inputs to subsets which are related to the given objects

I(n| k) — partial similarity of the point n with

model k

f(k| n) — membership of point n to model k
Maximalization of complete
conditional log-fuzzy similarity:

AZ-LL=maxg X In [Z, f(k|n)]

I(x,]1)=0.9
I(x,]2)=0.2
I(%,]1)=0.01
I(x]2)=0.3
£(1]x,)=0.9/(0.9+0.01)=1 2D
£(2%,)=0.3/(0.3+0.2)=0.6 Q\;‘}
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MFT-dynamic equations

1. Initialization of parameters (a priori knowledge)

Karla Stépanova Neuroinformatics: Computational cognitive modeling



MFT-dynamic equations

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities I(n|k) and class 2

memberships f(k|n)
I(x,]1)=0.1
o103 A1), K115,
1210, f(21x,)£21%,)
I(x,]2)=0.3
L@, S = (2n) Y28, expl-0.5(5 — )T

8§ (& — ) ®)
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MFT-dynamic equations

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities I(n| k) and class
memberships f(k| n)

I(%,11)=0.1
I(%,]2)=0.2
&2‘ } 1;:0 3 f(1]xy), f{1lx),
12)-0. fi21x).(21%,)
I(%,]2)-0.3
LA, S) = (en) Y28 expl-0.5(a - )T
87 )] ®
3. M-step:

.

ds,/dt (means, covariances, priors)
e S (t+dt)=S,(t)+ dS,/dt

Karla St&panova
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MFT-dynamic equations

1. Initialization of parameters (a priori knowledge)

2. E —step: compute similarities I(n| k) and class 2
memberships f(k|n)
I{x,|1)=0.1
I(x;]2)=0.2
bl 2)- L1, (L],
I(x,]1)=0.3 1% A2 1%)
I(x,]2)=0.3 XAz l¥e
L@, = (@0 Y28 expl-05( — miy)T
87 (& - mity)) &)
3. M-step:

» dS,/dt (means, covariances, priors)
o S (t+dt)=5,(t)+ dS,/dt

4. LL(t)-LL(t-dt) < threshold ?

n K
LL@) = 3" (> rils(lm;, )

i=1  j=1 ‘DW
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MFET-Evolution of concepts

Paralels - unsupervised clustering
- mixture models

- EM algorithm (m

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Learning - EM algorithm

1, E-step: estimation of all probabilities fi(x:):

Tieli (xi|my, Sie)
fuloxg) = TR Be)
> riwl(xi|O)
k=1
2, M-step: choose the parameters which maximizes log-likelihood when the probabilities
Sfe(xi) are known:

N
= %Z Je(x:)
Ti=1

N
> Frle)
2 fr(x)
J=1
N
2 Fe () (e —my) (i — m;,)7
Sk = i=1

=

B 1) B
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Some problems:

Unknown number of clusters - stopping criteria
Initialization

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Hypothesis

How do we evaluate between
these hypotheses?

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Figure: Evolution of the models during learning
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MFT

Existing cognitive models based on MFT

basic models of language acquisition and category discrimination

T Lk = ] Classification and categorization of actions.

o i i

Figure 3 - Teacher and learner before (left) and afier (right) the action is learnl. Figure 1- 12 used as imput: 112 i

Figu re: Tikhanoff 2007 - 6D, 112 actions, nonhierarchical

attention, emotional intelligence, integration of language and cognition, object

representation and cognition - mainly theoretical concepts Bio\Dat)

Karla Stépanova Neuroinformatics: Computational cognitive modeling



Vision as Bayesian inference

A, Scenc

Vocabulary ABC..

|
amples PN RN

Iimage

Feature extraction Praposale synlhizin o verfic lion

se 20 Amalysis by synthesis. A, Low-level processing (left panel) can extract edge features,
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Bayesian Property induction
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Bayesian causal induction
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Hierarchical Bayes

Hierarchical Bayesian models

Model A: combination of 2 mapping is used, parameters generated from basic parameters using a process g(:). Used for:
accommodation of individual differences, modeling memory retention, memory or emotional states.

Model B: the same parameters can lead to different data through the processes fi, ..., f,. Used for: joint model for
recognition, free recall and serial recall, assuming that all processes work on the same memory system.

Model C: one set of data is influenced by different sets of parameters through processes f1, ..., f,. Used for: modeling

accuracy and reaction times distributions for simple decision-making or in the Topics model.
Bio)\Dat

@ Lee (2011): How cognitive modeling can benefit from hierarchical Bayesian models
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Hierarchical Bayes

Hierarchical Bayes

visual input
(cognition)
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Hierarchical Bayes

Agents in virtual environment

Features:
shape, color,
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Hearing mechanism:
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Agent memory is represented
by MFT hierarchical modules
to represent abstract features
(similar shapes, functionality)
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Hierarchical Bayes

Further reading

[3
[
3
3
3
[3

Coursera lecture by Idan Segev: Synapses, neurons and brain www.coursera.org

Lectures: Computational cognitive science, http://www.compcogscilab.com/courses/ccs-2011/
Reading list of Bayesian methods: http://cocosci.berkeley.edu/tom/bayes.html

Ron Sun (2002). The Cambridge Handbook of Computational Psychology

Lewandowsky, S. and Farrell, S.(2010):Computational Modeling in Cognition: Principles and Practice
M.D.Lee and E-J.Wagenmakers :Bayesian Cognitive Modeling: A Practical Course (free chapter 1 and 2:

https://webfiles.uci.edu/mdlee/BB_Free.pdf)
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