
Task 1: clustering and classification

In this task the robot Bioloid learns to cluster and classify objects according to their shapes.

Self organizing map (SOM) is used for clustering and after annotation of some of its neurons,

the same map is also used for classification.

The robot is connected to Matlab running on a computer. All the computations are made in

Matlab so it is easily adjustable by editing the prepared script. Furthermore there are three

variables at the beginning of the script – number of training objects, number of testing

objects and position variability. These variables are designed for the user to try different

settings and examine relationships between variability, number of the training examples and

an error rate of the classification.

The script is divided into cells*, that should be executed in sequence, otherwise it may not

work properly. The following text is a description of the script and a guide to the task.

1. Connect the robot to a computer, turn the robot on and find out which COM port

number is assigned to the connection. Fill the number to the variable

COM_port_number at the beginning of the script and execute the first cell.

2. Set the number of training pictures, number of testing pictures, position variability

and execute the second cell. Note that the robot can fall while it moves to its default

position.

3. Execute the third cell to generate training pictures and labels.

4. Move the robot approximately 15cm in front of a screen and point camera toward to

the screen. Execute the fourth cell and two figures appear. One figure is a calibrating

picture that helps to move the robot to the right position and the second figure is an

image from the camera. Move the robot and the calibrating picture to face each

other [Fig. 1]. Press Enter in Matlab command window to update image from the

camera. Once the robot sees the calibrating picture correctly [Fig. 2] write „ok“ in the

Matlab command window to start the picture capturing process.

5. Wait until the step four ends and then execute the fifth cell. SOM Toolbox uses its

internal function to determine the required parameters and creates and learns new

SOM. Then the map is labeled – For each captured picture a winning neuron is found

and the label of the picture is assigned to the neuron. After learning and labeling, a

figure with U-matrix and neurons labels appears. U-matrix is a graphical visualisation

of distances between neurons.

6. Some of the neurons don’t have to be labaled because there are no pictures making

them a winning neurons. Execute the sixth cell to start k-means algorithm that adds

labels to the unlabeled neurons. This cell is optional, neurons may stay unlabeled.

7. Execute the seventh cell to generate testing pictures and labels.

8. Execute the eighth cell to start testing the map. Pictures are presented to the robot

and the robot uses the SOM to determine a shape in the picture and makes a pose

according to the recognized shape.

9. To terminate the connection with the robot execute the nineth cell. Otherwise go

back to cell seven or two to try different parameters or go to next task.

*cell is a block of statements between %% (double percent) and is executed by Ctrl+Enter

Fig. 1 – Robot looking at a calibrating figure.

Fig. 2 – A reference image from the robot‘s camera. Any image similar to this one is ok.

