
Neuroinformatics — lab exercises manual
authors:

Eduard Bakstein (TA), Daniel Novák (Lecturer)
http://nit.felk.cvut.cz, Prague 2015

March 2, 2017

Abstract
This is supportive text for labs of Neuroinformatics course at Czech Technical University in

Prague, Faculty of Electrical Engineering. Exercises for each task are provided in Matlab language.
We further recommend the book [3], which is nice and easy to read. A good summary is

provided by [1]. Particular topics are covered by [2], [4] Some advanced material is covered by [2],
[4].
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0 Mathematical apparatus
We will introduce numerical apparatus, which will be applied during activity modelling of neurons.

0.1 Numerical solution of differential equations
As in other fields dealing with dynamic systems, we will use differential equations throughout this
course. Due to the fact that their exact analytical solution can often be difficult or even impossible to
obtain, we introduce the approximate numerical solutions in this exercise.

Euler’s method
Let’s consider the first order differential equation

δx

δt
= f(x, t), (0.1)

Euler’s first order method consist of discretization δx
δt = ∆x

∆t . Lets’ take:

∆x = x(t+ ∆t)− x(t) = x(t2)− x(t)
∆t = t2 − t,

then we can express eq (0.1) as

∆x
∆t = f(x(t), t)

finally
x(t+ ∆t) = x(t) + ∆tf(x(t), t)

We can approximate the solution by taking into account the slope of the line at that point. However,
if the slope is dependent on t, this will lead to a very rough approximation. In this case, we can refine
the solution by other parameters of the Taylor series according to the formula:

x(t+ ∆t) = x(t) + ∆tδx
δt

+ 1
2(∆t)2 δ

2x

δt2
+O, (0.2)

where O represents all members of the higher orders. Therefore, the second order model is extended by
the curvature (2nd order derivative). This approximation should be closer to the analytical solutions.

Runge-Kutta method
In more sophisticated methods, we can additionally refine the solution by estimation not in the point
x or x+ ∆x, but in the middle of this interval - the so-called ”midpoint method“. The resulting value
should be more representative and lead to a more accurate estimate. Moreover, if we do not have
analytical expression of parameters of the Taylor expansion of higher orders, we can again estimate
parameters of high orders using numerical methods.

The actual Runge-Kutta method for numerical integration is the 4th order, which combines es-
timation in the middle of the interval with a numerical estimate of higher order. It can therefore
approximate solution of arbitrary functions. This leads to a higher computational cost, but - as we
shall see - leads to very accurate estimates of the solution. Runge-Kutta method is implemented in
Matlab function ode45().

Exercise 0.1 Our task is numerical approximation of the following differential equation

dx

dt
= t− x+ 1, (0.3)

initial conditions: x (0) = 1 using Euler’s method (1 and 2 order) and Runge-Kutta methods.
The analytical solution of this equation has the form x = t + e−t 1. Solve the equation in the

interval 〈0, 5), choose ∆t = 0.02.
1You can check e.g. at http://www.wolframalpha.com/, question: ”solve differential equation x ’= ... “

2

http://www.wolframalpha.com/


Task 0.1 (2 b) Plot the solution x(t) = f(t) for t = 0, . . . , 2s using Euler’s method of first and second
order 2 (XEuler) and plot into graph along with the analytical solution.

Task 0.2 (1 b) Solve the task using Runge-Kutta xRunge and add the solution to the same graph.
Hints: in the function ode45, the first parameter is a callback function, which desribes the equation

to be solved. In this case the callback can be easily defined using so called function handle and
anonymous function3 as ode_func = @(t,x,flag) 1−x+t;

Task 0.3 (1.5 b) Plot the dependence of relative error of each numerical method and compare it to
the analytical solution. For example (for Euler’s method) (xEuler − xexact)/xEuler = f(∆t)

Task 0.4 (1.5 b) Plot absolute error of each numerical method as a function of the size of the inte-
gration step ∆t ∈ (0.001, 1)s in time t = 1s.

2when solving the second order Euler method you can proceed in two ways. 1) Derivating analytic function f(x, t).
2) estimate value of f ′(x, t) using the slope f(x, t) between points t and t + Deltat

3see for example. http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
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1 Neuron models
In this block, we will describe properties of the action potential and behavior of individual neurons. We
will implement several membrane and neuron models of differing level of complexity and investigate
how the simplifying assumptions affect the resulting action potentials or spike-trains.

1.1 Model of membrane and synapse: simplest case
Considering that the action potentials propagate as changes in electrical potential on the cell membrane,
it seems natural to model the membrane as an equivalent electrical circuit. The simplest model that
we introduce in this exercise works with single type of ion channels only - the leakage chloride channels
(always open) - and consists of an RC circuit and a voltage power source, representing the membrane
resting potential (Nernst potential) . As we shall see, its response to the input excitation represents
only a part of the true membrane behavior and is far away from the the real action potential but we
can still find it useful in understanding the basic concept and properties of the membrane itself.

Exercise 1.1 (RC model) Model memrabe behavior using RC model - see figure 1. Input membrane
current Istim is a rectangular pulse signal 10pA lasting 20ms. It is neccesary to convert the stimulation
currentIstim to current density to be compatible with ICl and IC . This can be done easily by dividing
the input current by membrane area A4. The electrode is stimulating and at the same time recording
the membrane current (expressed in cm2). Hence I ′

stim = Istim/A ≈ 10−11·106 ≈ 10−5. The membrane
parameters are the following:

capacity: Cm = 1 µF/cm2,
conductance: gCl = 0.3 ms/cm2,
time constant : τ = Cm/gCl,
membrane surface : A ≈ 1 · 10−6 cm2

Nernst potential of Cl: VCl = −68 mV ,
initial conditions: V (0) = −68 mV , ICl(0) = 0 µA/cm2, IC(0) = 0 µA/cm2.

Task 1.1 (4 b) Plot dependence V (t)(= φin − φout), ICl(t), IC(t)for these time interval 〈0, 40〉ms,
∆t = 0.01ms

Figure 1: Membrane model with Cl leakage channel

Hence

IC(t) = Cm
dV

dt
(t) (1.1)

IC(t) = Istim(t)
A

− ICl(t) → Istim = A · IC(t) +A · ICl(t) (1.2)

ICl(t) = gCl(V (t)− VCl) (1.3)
4ICl and IC are in fact current densities and it would be more appropriate to use % instead of I. However, we will

stick to the terminology used in [3] and use I.
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We can express the time constant of the RC circuit as

τ = Cm
gCl

(1.4)

Combining the above equations we get

Cm
dV

dt
= Istim(t)

A
− gCl(V (t)− VCl) (1.5)

Or expressed using time constant τ from 1.4 we get

τ
dV

dt
= VCl − V (t) + Istim(t)

AgCl
(1.6)

Euler’s method (forward)

τ
V (j)− V (j − 1)

∆t = VCl − V (j − 1) + Istim(j − 1)
AgCl

(1.7)

V (j) = V (j − 1) + ∆t
τ

[VCl − V (j − 1) + Istim(j − 1)
AgCl

] (1.8)

Exercise 1.2 (EPSP model) The task is analysis of a model depicted in figure 2. This model incor-
porates so called ”excitatory postsynaptic potential“ (EPSP) simulating behavior of membrane den-
drite of the postsynaptic neuron after receiving excitation. Synapse is modeled by variable conductance
gsyn. In other words: the model contains additional channels, whose conductance is neurotransmitter-
controlled and further voltage and time-dependent (literally in the moment of receiving neurotransmit-
ter the channels are opening, hence their conductance is increasing - see result of eq (1.9)) with time
constant τsyn = 1 mS. The parameters are the same like in the previous case. Stimulation current
Istim = 0 , Vsyn = 10 mV . In time t = 1 ms the neurotransmitter is released, hence gsyn(1 + δ) = 1.
Initial conditions V (1) = 0, Isyn = 0, gsyn(1) = 0, gL = 1.

τsyn
dgsyn(t)

dt
= −gsyn(t) + δ(t− tpre − tdelay) (1.9)

Task 1.2 (1 b) Plot dependence V (t), ICl(t), IC(t), Isyn(t). Explain trends and compare them with
the previous task 1.1.
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Figure 2: EPSP: Synapse model with leakage Cl channel

2 Real data analysis, modelling of neuronal populations
In this block, we will analyze real µEEG (micro-EEG) data, recorded from brains of Parkinson’s
disease patients. We will compare the data to our simulations from the previous block and we will
analyze correlation with other biosignal - the electrooculogram (EOG).

Further on in this section, we will simulate more complicated network of artificial neurons and (so
called spiking network) and analyze its behavior under varying conditions.
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3 Information coding and transfer in the brain
In this block, we will model some of the processes taking part in transferring and storing information
in the brain. We will go through the basics of cognitive modeling and we will try out the so-called
Self-organizing maps.
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