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Abstract

This is supportive text for labs of Neuroinformatics course at Czech Technical University in
Prague, Faculty of Electrical Engineering. Exercises for each task are provided in Matlab language.

We further recommend a book [3], which is nice and easy to read. A good summary is provided
by [1]. Particular topics are covered by [2], [4] Some advance material cis cover by [2], [4].
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0 Mathematical apparatus

We will introduce numerical apparatus, which will be applied during activity modelling of neurons.

0.1 Numerical solution of differential equations

As in other sectors dealing with dynamic systems, we will use differential equations throughout this
course. Due to the fact that their exact analytical solutions can often be difficult or even impossible,
we introduce in this exercise the approximate numerical solutions.

Euler’s method

Let’s consider first order differential equation

% = f(z,1), (0.1)
Euler’s first order metoda consist of discretization % = %. Lets’ take:
Ax = z(t+ At) —z(t) = x(t2) — z(t)
At = ty—t,
then we can express eq (0.1) as
Az

X = fa(t),)

finally
x(t + At) = x(t) + At f(z(t),1)

We can approximate solution by taking into account the slope of the line at that point. However,
if the slope is dependent on t, this will be a very rough approximation. In this case, we can refine the
solutions by other parameters of the Taylor series according to the formula:
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where O represents all members of the higher orders. In the second order therefore we model in
addition the slope curvature. This approximation should be closer to analytical solutions.

Runge-Kutta method

In the methods of higher orders we can additionally refine the solution by estimation not in the point
x and x + Az, but in the middle of this period - the so-called ,midpoint method®. The resulting value
should be more representative in a given interval and lead to a more accurate estimate. Moreover, if
we do not have analytical expression of parameters of the Taylor expansion of higher orders, we can
again estimate parameters of high orders using numerical methods.

The actual method of Runge-Kutta numerical integration is the 4th order, which combines es-
timation in the middle of the interval with a numerical estimate of higher order. It can therefore
approximate solution of arbitrary functions. This leads to a higher computational cost, but - as we
shall see - leads to very accurate estimates of the solution. Runge-Kutta method is implemented in
Matlab function oded5 ().

Exercise 0.1 Our task is numerical approximation of the following differential equation

dx
— =t—x+1 .
o T , (0.3)

initial conditions: x (0) = 1 using Euler’s method (1 and 2 order) and Runge-Kutta methods.
The analytical solution of this equation has the form 2 = ¢t +e~* . Solve the equation in the
interval (0, 5), choose At = 0.02.

1You can check e.g. at http://www.wolframalpha.com/, question: ,solve differential equation x ’= ... «


http://www.wolframalpha.com/

Task 0.1 (2 b) Plot the solution z(t) = f(¢t) for t =0, ..., 2s using Euler’s method of first and second
order 2 (Xpuier) and plot into graph along with the analytical solution.

Task 0.2 (1 b) Solve the task using Runge-Kutta & pynge and add the solution to the same graph.

Hints: function ode45 has as first parameter a callback to the function, which desribes the equation
to be solved. In this case the callback can be easily defined using so called function handle and
anonymous function® as ode_func = @ (t,x, flag) l—x+t;

Task 0.3 (1.5 b) Plot the dependence of relative error of each numerical method against the analytical
solution. For example (for Euler’s method) (Z guier — Tezact)/TEuier = f(AL)

Task 0.4 (1.5 b) Plot absolute error of each numerical method as a function of the size of the inte-
gration step At € (0.001,1)s in time ¢t = 1s.

2when solving the second order Euler method you can proceed in two ways. 1) Derivating analytic function f(z,t).
2) estimate value of f’(z,t) using the slope f(z,t) between points ¢ and t + Deltat
3see for example. http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html


http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

1 Neuron models

In this part we will describe properties of the action potential and behaviour of individual neuron.
We will implement several neuron models of differing level of complexity and investigate how their
simplifying assumptions affect the resulting action potentials or spike-trains.



2 Real data analysis, modelling of neuronal populations

In this block, we will play with analyzing of real uEEG (micro-EEG) data, recorded from brains of
Parkinson’s disease patients. We will compare the data to our simulations from the previous block and
we will analyze correlation with other biosignal - the electrooculogram (EOG).

Further in this section we will simulate more complicated network of artificial neirons and (so called
spiking network) and analyze its behavior under varying conditions.



3 Information coding and transfer in the brain

In this block, we will model some of the processes taking part in transferring and storing information
in the brain. We will go through the basics of cognitive modelling and we will try out the so-called

Self-organizing maps.



