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Abstract
This is supportive text for labs of Neuroinformatics course at Czech Technical University in

Prague, Faculty of Electrical Engineering. Exercises for each task are provided in Matlab language.
We further recommend a book [3], which is nice and easy to read. A good summary is provided

by [1]. Particular topics are covered by [2], [4] Some advance material cis cover by [2], [4].

Contents
0 Mathematical apparatus 2

0.1 Numerical solution of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Neuron models 4
1.1 Model of membrane and synapse: simpler case . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Mebrane and synapse modelling 2: Hodgkin-Huxley . . . . . . . . . . . . . . . . . . . . 6
1.3 Spike train modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Real data analysis, modelling of neuronal populations 9
2.1 Spiketrain modelling II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Artificial and real signal - comparison . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Information coding and transfer in the brain 11

Bibliography 12

1

mailto:eduard.bakstein@.fel.cvut.cz
mailto:xnovakd1@labe.felk.cvut.cz
http://nit.felk.cvut.cz


0 Mathematical apparatus
We will introduce numerical apparatus, which will be applied during activity modelling of neurons.

0.1 Numerical solution of differential equations
As in other sectors dealing with dynamic systems, we will use differential equations throughout this
course. Due to the fact that their exact analytical solutions can often be difficult or even impossible,
we introduce in this exercise the approximate numerical solutions.

Euler’s method
Let’s consider first order differential equation

δx

δt
= f(x, t), (0.1)

Euler’s first order metoda consist of discretization δx
δt = ∆x

∆t . Lets’ take:

∆x = x(t+ ∆t)− x(t) = x(t2)− x(t)
∆t = t2 − t,

then we can express eq (0.1) as

∆x
∆t = f(x(t), t)

finally
x(t+ ∆t) = x(t) + ∆tf(x(t), t)

We can approximate solution by taking into account the slope of the line at that point. However,
if the slope is dependent on t, this will be a very rough approximation. In this case, we can refine the
solutions by other parameters of the Taylor series according to the formula:

x(t+ ∆t) = x(t) + ∆tδx
δt

+ 1
2(∆t)2 δ

2x

δt2
+O, (0.2)

where O represents all members of the higher orders. In the second order therefore we model in
addition the slope curvature. This approximation should be closer to analytical solutions.

Runge-Kutta method
In the methods of higher orders we can additionally refine the solution by estimation not in the point
x and x+ ∆x, but in the middle of this period - the so-called ”midpoint method“. The resulting value
should be more representative in a given interval and lead to a more accurate estimate. Moreover, if
we do not have analytical expression of parameters of the Taylor expansion of higher orders, we can
again estimate parameters of high orders using numerical methods.

The actual method of Runge-Kutta numerical integration is the 4th order, which combines es-
timation in the middle of the interval with a numerical estimate of higher order. It can therefore
approximate solution of arbitrary functions. This leads to a higher computational cost, but - as we
shall see - leads to very accurate estimates of the solution. Runge-Kutta method is implemented in
Matlab function ode45().

Exercise 0.1 Our task is numerical approximation of the following differential equation

dx

dt
= t− x+ 1, (0.3)

initial conditions: x (0) = 1 using Euler’s method (1 and 2 order) and Runge-Kutta methods.
The analytical solution of this equation has the form x = t + e−t 1. Solve the equation in the

interval 〈0, 5), choose ∆t = 0.02.
1You can check e.g. at http://www.wolframalpha.com/, question: ”solve differential equation x ’= ... “
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Task 0.1 (2 b) Plot the solution x(t) = f(t) for t = 0, . . . , 2s using Euler’s method of first and second
order 2 (XEuler) and plot into graph along with the analytical solution.

Task 0.2 (1 b) Solve the task using Runge-Kutta xRunge and add the solution to the same graph.
Hints: function ode45 has as first parameter a callback to the function, which desribes the equation

to be solved. In this case the callback can be easily defined using so called function handle and
anonymous function3 as ode_func = @(t,x,flag) 1−x+t;

Task 0.3 (1.5 b) Plot the dependence of relative error of each numerical method against the analytical
solution. For example (for Euler’s method) (xEuler − xexact)/xEuler = f(∆t)

Task 0.4 (1.5 b) Plot absolute error of each numerical method as a function of the size of the inte-
gration step ∆t ∈ (0.001, 1)s in time t = 1s.

2when solving the second order Euler method you can proceed in two ways. 1) Derivating analytic function f(x, t).
2) estimate value of f ′(x, t) using the slope f(x, t) between points t and t + Deltat

3see for example. http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
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1 Neuron models
In this part we will describe properties of the action potential and behaviour of individual neuron.
We will implement several neuron models of differing level of complexity and investigate how their
simplifying assumptions affect the resulting action potentials or spike-trains.

1.1 Model of membrane and synapse: simpler case
Taking into accout that nerve impulses propagate through changes in electrical potential on the cell
membrane, it seems natural to create the basic model as an equivalent electrical circuit. The simplest
model, that we introduce in this exercise, is working only with one type of channel - leakega chloride
channels (always opened) - and takes the form of an RC circuit, the resting battery, replacing the resting
potential of the membrane (Nerst potential) . As we shall see, the response to the input excitation is
far away from the the real action potential but serve us in understanding the basic concept.

Exercise 1.1 (RC model) Model memrabe behavior using RC model - see figure 1. Input membrane
current Istim is rectungalar signal 10pA lasting 20ms. It is neccesary to convert the stimulating
currentIstim to current density to be compatible with ICl and IC . This can be done easily by dividing
the input current by membrane area A4. The electrode is stimulating and at the same time recording
the membrane current (expressed in cm2). Hence I ′stim = Istim/A ≈ 10−11 · 106 ≈ 10−5. The mebrane
parameters are the following:

capacity: Cm = 1 µF/cm2,
conductance: gCl = 0.3 ms/cm2,
time constant : τ = Cm/gCl,
mebrane surface : A ≈ 1 · 10−6 cm2

Nerns potential of Cl: VCl = −68 mV ,
initial conditions: V (0) = −68 mV , ICl(0) = 0 µA/cm2, IC(0) = 0 µA/cm2.

Task 1.1 (2 b) Plot dependence V (t)(= φin − φout), ICl(t), IC(t)for these time interval 〈0, 40〉ms,
∆t = 0.01ms

Figure 1: Membrane model with Cl leakage channel

Hence

IC(t) = Cm
dV

dt
(t) (1.1)

IC(t) = Istim(t)
A

− ICl(t) → Istim = A · IC(t) +A · ICl(t) (1.2)

ICl(t) = gCl(V (t)− VCl) (1.3)

We can express the time constant of the RC circuit as
4ICl and IC are in fact current densities and it would be more appropriate to use % instead of I. However, we will

stick to the terminology used in [3] and use I.
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τ = Cm
gCl

(1.4)

Combining the above equations we get

Cm
dV

dt
= Istim(t)

A
− gCl(V (t)− VCl) (1.5)

Or expressed using time constant τ from 1.4 we get

τ
dV

dt
= VCl − V (t) + Istim(t)

AgCl
(1.6)

Euler’s method (forward)

τ
V (j)− V (j − 1)

∆t = VCl − V (j − 1) + Istim(j − 1)
AgCl

(1.7)

V (j) = V (j − 1) + ∆t
τ

[VCl − V (j − 1) + Istim(j − 1)
AgCl

] (1.8)

Exercise 1.2 (EPSP model) The task is analysis of a model depicted in figure 2. This model
incorporates so called ”excitatory postsynaptic potential“ (EPSP) simulating behavior of membrane
dendrite of the postsynaptic’s neuron after receiving excitation. Synapse is modelled by chanchagable
conductance gsyn. In other words: the model contains additionally channels, which react to release
to the neurotransmitter (literally they are opening, hence their conductance is decreasing - see result
of eq (1.9)) with time constant τsyn = 1 mS. The parameters are the same like in the previous case.
Stimulation current Istim = 0 , Vsyn = 10 mV . In time t = 1 ms the neurotransmitter is released,
hence gsyn(1 + δ) = 1. Initial conditions V (1) = 0, Isyn = 0, gsyn(1) = 0, gL = 1.

τsyn
dgsyn(t)

dt
= −gsyn(t) + δ(t− tpre − tdelay) (1.9)

Task 1.2 (0 b) Plot dependence V (t), ICl(t), IC(t), Isyn(t). Explain trends and compare them with
the previous task 1.1.

Figure 2: EPSP: Synapse model with leakage Cl channel
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1.2 Mebrane and synapse modelling 2: Hodgkin-Huxley
Exercise 1.3 (Hodgkin-Huxley) The taks is analysis of Hodgkin-Huxley(HH) model depicted in
figure 3. Compared to the previous models, HH incorporates variables which are dependent both on
time model and voltage, hence Na+ a K+ channels are controlled by voltage. The model is based on
the following set of eqautions

EK

KRNaRRL

C

Iext

E EL Na

External input

Capacitor Resistance of ion channels

Reversal potentials of ion 
channels

EK

Figure 3: Hodgkin-Huxley model. Each branch represents resting potential a and resistivity of a
particular channel: EL, RL - channels always opened (”Leakage channels“), ENa, RNa - sodium
channels controlled by voltage , EK , RK - calcium channels controlled by voltage.

Current in ion channels can be described by Ohm’s law:

Iion = ĝion(V − Eion)
(

= (V − Eion)/R̂ion
)
, (1.10)

where ĝion is the maximum conductance of ion channel
Next, we introduce auxilary variables dependent on voltage and time n(V, t), m(V, t), h(V, t),

resulting in the following conductances:

ĝK(V, t) = gKn
4 (1.11)

ˆgNa(V, t) = gNam
3h (1.12)

Combining eq.1.12-1.10 we get

C
dV
dt = −gKn

4(V − EK)− gNam
3h(V − ENa)− gL(V − EL) + Iext(t) (1.13)

Next, we define time constants

τn(V )dn
dt = −[n− n0(V )] (1.14)

τm(V )dm
dt = −[m−m0(V )] (1.15)

τh(V )dh
dt = −[h− h0(V )] (1.16)

For each variable we get

dx

dt
= − 1

τx(V ) [x− x0(V )], x ∈ {n,m, h} (1.17)

and after substituing Euler’s numerical integration we get

x (t+ ∆t) =
(

1− ∆t
τx

)
x(t) + ∆t

τx
x0. (1.18)
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Initial conditions hold:

x(0) = α

α+ β
, τx = αβ, x ∈ {n,m, h} (1.19)

αn = 10− V
100

(
e

10−V
10 − 1

) , βn = 0.125e− V
80 (1.20)

αm = 25− V
10
(
e

25−V
10 − 1

) , βm = 4e− V
18 (1.21)

αh = 0.07e V20 , βh = 1
e

30−V
10 + 1

(1.22)

Task 1.3 (0 b) Download model implementation file cv3_HH.m from course website. Visualize time
output of the model (membrane voltage V ), which is excited by the constant current Iext = 30µA/cm2

(default settings). Implementation works from time -30ms to get steady system. Plot output for time
0− 100ms.

Task 1.4 (1 b) Expand visualization by adding time trend of conductance g for each channel type
(describe different time series using legend)

Task 1.5 (2 b) Visualize dependence of firing frequency on external constant current Iext - so called
activation or transfer function. Set the input current Iext in the range 0 − 15 µA/cm2. You should
compute firing frequency after reaching the steady state (hint: use fce diff, find alt. findpeaks).
Which shape does the activation function resamble? For which values of the current Iext will the shape
of the activation function change significantly (perform a discussion)?

Task 1.6 (2 b) Adding noise to the input current will change behaviour of the model. Visualize
membrane voltage V and activation function as a response to input current with added noise. Use
Iext = 30µA/cm2 and white noise (randn) with the standard deviation 60 and zero mean, for plotting
activation function use Iext = 〈0, 15〉µA/cm2, noise with standard deviation 30. How did the resulting
output change? Try out for different noise levels.

Task 1.7 (1 b) Plot ISI histogram for the input current Iext = 30µA/cm2 and noise with standard
deviation 60. Compare to the case with zero noise and discuss the results.
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1.3 Spike train modelling
We showed in the previous tasks, how does noise on the input affect temporal and frequency character-
istics of a neuron. Noise signal on neuron input is much more realistic than constant current - mainly
due to the fact that neuron input is formed by a summary signal from many synapses of pre-synaptic
neurons, connected to its dendrites. In this section, we will simulate such signal and use it as input to
a neuron model.

You have learned in the lectures, that interspike intervals (ISI) of typical cortical neurons exhibit
log-normal distribution. Before we start modelling spiketrains, let us verify this on a model.

Exercise 1.4 (LIF neuron model and Poisson spiketrain) The complex models from previous
exercises, such as Hodgkin-Huxley, are able to model the action potential shape based on physiological
modelling of ion channels’ behavior. If we want to model more complex neural networks, even simpler
models (such as Wilson model) are overly complex for such application. When modelling neural
networks, the accurate shape of action potential is not as important (we will see it can be simply
modelled using α functions) as the spike timing. For these purposes, the Leaky integrate and fire
neuron is often used. The basics of this model includes simple integrator, which is reset to resting
potential when a preset threshold is exceeded.

Task 1.8 (1 b) Download LIF model from the course website - cv4_lif.m. Show model output for
constant input current (default setting). Plot output voltage, along with spike times (= reset times)
over time. Compute firing rate and display an ISI histogram.

Task 1.9 (2 b) Modify previous task by applying input noise with mean 12 and standard deviation
100, instead of constant current (function randn). Simulate for times in the range 0 − 105 and
integration step dt = 0.01. Set bin number to 60 when computing histograms. Convert histograms to
probability density function estimates (

∑
pdf = 1).

Task 1.10 (3 b) Fit lognormal distribution to the data from the previous task. The lognormal distri-
bution is given by:

pdf lognormal(x;µ, σ) = 1
xσ
√

2π
e− (log(x)−µ))2

2σ2 (1.23)

One possible solution would be to fit the analytical pdf to ISI histogram from the previous task. This,
however, would be completely wrong, as one point in the histogram does not mean one, but many data
points (think about this for a while!).

Thus, we will use the function lognfit, which estimates lognormal distribution parameters using
maximum likelihood estimates. Based on these estimates, calculate the lognormal pdf and display along
with the histogram. (You will probably have to adjust the bin number to get a good representation)
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2 Real data analysis, modelling of neuronal populations
In this block, we will play with analyzing of real µEEG (micro-EEG) data, recorded from brains of
Parkinson’s disease patients. We will compare the data to our simulations from the previous block and
we will analyze correlation with other biosignal - the electrooculogram (EOG).

Further in this section we will simulate more complicated network of artificial neirons and (so called
spiking network) and analyze its behavior under varying conditions.

2.1 Spiketrain modelling II
Exercise 2.1 (Lognorm spiketrain) We showed in the last exercise how does LIF neuron model
respond to a noisy input. In this task, we will show that real signal, produced as a combination of
presynaptic potentials, really resembles gaussian noise in many ways.

You know from the lectures, that the Poisson spiketrain, - a spiketrain where the number of events
per unit time follows poisson distribution - has exponential distribution of interspike intervals (ISIs).
Further, the physiological constraints prevent neurons from firing earlier than after the refractory period
- a fact we have to incorporate in our implementation.

In this example, we will generate a set of spiketrains using exponential distribution, taking refractory
period into account, and mix them to create an artificial muEEG signal.

Task 2.1 (1 b) Generate 100 000 ISI intervals from the exponential distribution with mean E[X] =
50ms (hint: use expnrd function). Display ISI histogram.

Remove all ISI values lower than the refractory period of 1ms. Display ISI histogram and compare
to the one before refractory period filtering. How many spikes were removed? Compute mean firing
rate and coefficient of variation before and after filtering and compare.

Convert the resulting ISI ingervals to a spiketrain (logical vector with ones at spike positions hint:
cumsum). Use time step of dt = 0.1ms. Check for errors by plotting the result

Task 2.2 (1 b) To convert binary spiketrain to time course, we will use convolution with α−function,
which will play the role of spike template.

Generate time course of the α− function according to:

I(t) = c · t · e− t
tpeak (2.1)

c = gpeak
tpeak

e1 (2.2)

where gpeak = 0.5, tpeak = 1ms. Compute the function values for times in the interval t ∈ 〈0, 30〉, the
time step should be again dt = 0.1ms. Plot the output. After assessing the result, you may reduce
the time range if appropriate.

Convolve the alpha function with Poisson spiketrain from the previous task (conv). Check the
result again by plotting.

Task 2.3 (1 b) Divide the time course from previous task into 1000 signals of the same length(reshape).
In this task, we will simulate mixing of presynaptic potentials (represented by the simulated neurons),
at dendrites. The resulting summary signal will be given by a linear combination of the individual
spiketrains. Coefficients will be given by weights w, which will be modelled as random from exponential
distribution with λ = 1.

In order to have better control of the amplitude of the resulting signal, we will normalize the weights
so that their sum equals a constant k. Set the value k = 100.

Combine the 1000 spiketrains into one signal, using a linear combination with weights w. You can
represent the linear combination as matrix multiplication (elegant + much faster in Matlab).

Compare the resulting signal to gaussian noise (time and distribution). What are the key differ-
ences?

Task 2.4 (1 b) Apply the signal from previous task to the input of LIF neuron from Exercise and
observe the output. What changes do you observe when you change the normalizing constant k = 150.
What does the ISI histogram look like, now? Investigate and comment behavior of the LIF neurin.

9



2.1.1 Artificial and real signal - comparison

We have now generated artificial signal as a combination of Poisson spiketrains, convoluted with alpha
function. In these tasks, we will compare the simulated signal to real µEEG, recorded from basal
ganglia of a Parkinson’s disease patient during deep brain surgery. We will show, that this simple
method of data generation is not far from reality.

Task 2.5 (1 b) Use artificial signal generated in the previous task. It is a time course with sampling
rate fs = 10kHz. Download µEEG data from the course website. The .mat file contains variable
realmEEG with 1s recording of activity around Thalamus (fs = 24kHz). Display both signals in
parallel plots (with correct time coordinates). Investigate both signals.

Task 2.6 (1 b) The real signal, used in the previous task, was an extracellular recording. Conversely,
the signal we generated was a simulation of EPSP signal (that is why we used the alpha function)!
In this task, we will generate artificial extracellular signal in a similar way. Use real spike shapes,
downloaded from the course website instead of the alpha function. There are 5 spike shapes in the data
sample - use random spike shape and random amplitude for each simulated neuron. In your simulation,
use same sampling frequency as in the real signal, i.e. fs = 24kHz. Generate the composite signal
and compare it to the real microelectrode recording.

Task 2.7 (1 b) From visual comparison of time courses of real and simulated data, we get a rough idea
of how similar these two signals are. Your next task is to try out some quantitative comparisons. Choose
and implement appropriate methods of signal comparison. You can use e.g.: frequency spectrum,
amplitude distribution etc.
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3 Information coding and transfer in the brain
In this block, we will model some of the processes taking part in transferring and storing information
in the brain. We will go through the basics of cognitive modelling and we will try out the so-called
Self-organizing maps.
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