
Neuroinformatics — lab exercises manual
authors:

Eduard Bakstein (TA), Daniel Novák (Lecturer)
http://nit.felk.cvut.cz, Prague 2015

April 21, 2016

Abstract
This is supportive text for labs of Neuroinformatics course at Czech Technical University in

Prague, Faculty of Electrical Engineering. Exercises for each task are provided in Matlab language.
We further recommend a book [3], which is nice and easy to read. A good summary is provided

by [1]. Particular topics are covered by [2], [4] Some advance material cis cover by [2], [4].

Contents
0 Mathematical apparatus 2

0.1 Numerical solution of differential equations . 2

1 Neuron models 4
1.1 Model of membrane and synapse: simpler case . 4
1.2 Mebrane and synapse modelling 2: Hodgkin-Huxley . 6
1.3 Spike train modelling . 8

2 Real data analysis, modelling of neuronal populations 9
2.1 Spiketrain modelling II . 9

2.1.1 Artificial and real signal - comparison . 10
2.2 Real data processing: Spike sorting . 11
2.3 Analysis of real data: Eye movements . 12

3 Information coding and transfer in the brain 13
3.1 Hebbian learning . 13
3.2 Simulated neural networks . 13
3.3 Self-organizing maps (SOM) . 14

Bibliography 16

1

mailto:eduard.bakstein@.fel.cvut.cz
mailto:xnovakd1@labe.felk.cvut.cz
http://nit.felk.cvut.cz

0 Mathematical apparatus
We will introduce numerical apparatus, which will be applied during activity modelling of neurons.

0.1 Numerical solution of differential equations
As in other sectors dealing with dynamic systems, we will use differential equations throughout this
course. Due to the fact that their exact analytical solutions can often be difficult or even impossible,
we introduce in this exercise the approximate numerical solutions.

Euler’s method
Let’s consider first order differential equation

δx

δt
= f(x, t), (0.1)

Euler’s first order metoda consist of discretization δx
δt = ∆x

∆t . Lets’ take:

∆x = x(t+ ∆t)− x(t) = x(t2)− x(t)
∆t = t2 − t,

then we can express eq (0.1) as

∆x
∆t = f(x(t), t)

finally
x(t+ ∆t) = x(t) + ∆tf(x(t), t)

We can approximate solution by taking into account the slope of the line at that point. However,
if the slope is dependent on t, this will be a very rough approximation. In this case, we can refine the
solutions by other parameters of the Taylor series according to the formula:

x(t+ ∆t) = x(t) + ∆tδx
δt

+ 1
2(∆t)2 δ

2x

δt2
+O, (0.2)

where O represents all members of the higher orders. In the second order therefore we model in
addition the slope curvature. This approximation should be closer to analytical solutions.

Runge-Kutta method
In the methods of higher orders we can additionally refine the solution by estimation not in the point
x and x+ ∆x, but in the middle of this period - the so-called ”midpoint method“. The resulting value
should be more representative in a given interval and lead to a more accurate estimate. Moreover, if
we do not have analytical expression of parameters of the Taylor expansion of higher orders, we can
again estimate parameters of high orders using numerical methods.

The actual method of Runge-Kutta numerical integration is the 4th order, which combines es-
timation in the middle of the interval with a numerical estimate of higher order. It can therefore
approximate solution of arbitrary functions. This leads to a higher computational cost, but - as we
shall see - leads to very accurate estimates of the solution. Runge-Kutta method is implemented in
Matlab function ode45().

Exercise 0.1 Our task is numerical approximation of the following differential equation

dx

dt
= t− x+ 1, (0.3)

initial conditions: x (0) = 1 using Euler’s method (1 and 2 order) and Runge-Kutta methods.
The analytical solution of this equation has the form x = t + e−t 1. Solve the equation in the

interval 〈0, 5), choose ∆t = 0.02.
1You can check e.g. at http://www.wolframalpha.com/, question: ”solve differential equation x ’= ... “

2

http://www.wolframalpha.com/

Task 0.1 (2 b) Plot the solution x(t) = f(t) for t = 0, . . . , 2s using Euler’s method of first and second
order 2 (XEuler) and plot into graph along with the analytical solution.

Task 0.2 (1 b) Solve the task using Runge-Kutta xRunge and add the solution to the same graph.
Hints: function ode45 has as first parameter a callback to the function, which desribes the equation

to be solved. In this case the callback can be easily defined using so called function handle and
anonymous function3 as ode_func = @(t,x,flag) 1−x+t;

Task 0.3 (1.5 b) Plot the dependence of relative error of each numerical method against the analytical
solution. For example (for Euler’s method) (xEuler − xexact)/xEuler = f(∆t)

Task 0.4 (1.5 b) Plot absolute error of each numerical method as a function of the size of the inte-
gration step ∆t ∈ (0.001, 1)s in time t = 1s.

2when solving the second order Euler method you can proceed in two ways. 1) Derivating analytic function f(x, t).
2) estimate value of f ′(x, t) using the slope f(x, t) between points t and t + Deltat

3see for example. http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

3

http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

1 Neuron models
In this part we will describe properties of the action potential and behaviour of individual neuron.
We will implement several neuron models of differing level of complexity and investigate how their
simplifying assumptions affect the resulting action potentials or spike-trains.

1.1 Model of membrane and synapse: simpler case
Taking into accout that nerve impulses propagate through changes in electrical potential on the cell
membrane, it seems natural to create the basic model as an equivalent electrical circuit. The simplest
model, that we introduce in this exercise, is working only with one type of channel - leakega chloride
channels (always opened) - and takes the form of an RC circuit, the resting battery, replacing the resting
potential of the membrane (Nerst potential) . As we shall see, the response to the input excitation is
far away from the the real action potential but serve us in understanding the basic concept.

Exercise 1.1 (RC model) Model memrabe behavior using RC model - see figure 1. Input membrane
current Istim is rectungalar signal 10pA lasting 20ms. It is neccesary to convert the stimulating
currentIstim to current density to be compatible with ICl and IC . This can be done easily by dividing
the input current by membrane area A4. The electrode is stimulating and at the same time recording
the membrane current (expressed in cm2). Hence I ′stim = Istim/A ≈ 10−11 · 106 ≈ 10−5. The mebrane
parameters are the following:

capacity: Cm = 1 µF/cm2,
conductance: gCl = 0.3 ms/cm2,
time constant : τ = Cm/gCl,
mebrane surface : A ≈ 1 · 10−6 cm2

Nerns potential of Cl: VCl = −68 mV ,
initial conditions: V (0) = −68 mV , ICl(0) = 0 µA/cm2, IC(0) = 0 µA/cm2.

Task 1.1 (2 b) Plot dependence V (t)(= φin − φout), ICl(t), IC(t)for these time interval 〈0, 40〉ms,
∆t = 0.01ms

Figure 1: Membrane model with Cl leakage channel

Hence

IC(t) = Cm
dV

dt
(t) (1.1)

IC(t) = Istim(t)
A

− ICl(t) → Istim = A · IC(t) +A · ICl(t) (1.2)

ICl(t) = gCl(V (t)− VCl) (1.3)

We can express the time constant of the RC circuit as
4ICl and IC are in fact current densities and it would be more appropriate to use % instead of I. However, we will

stick to the terminology used in [3] and use I.

4

τ = Cm
gCl

(1.4)

Combining the above equations we get

Cm
dV

dt
= Istim(t)

A
− gCl(V (t)− VCl) (1.5)

Or expressed using time constant τ from 1.4 we get

τ
dV

dt
= VCl − V (t) + Istim(t)

AgCl
(1.6)

Euler’s method (forward)

τ
V (j)− V (j − 1)

∆t = VCl − V (j − 1) + Istim(j − 1)
AgCl

(1.7)

V (j) = V (j − 1) + ∆t
τ

[VCl − V (j − 1) + Istim(j − 1)
AgCl

] (1.8)

Exercise 1.2 (EPSP model) The task is analysis of a model depicted in figure 2. This model
incorporates so called ”excitatory postsynaptic potential“ (EPSP) simulating behavior of membrane
dendrite of the postsynaptic’s neuron after receiving excitation. Synapse is modelled by chanchagable
conductance gsyn. In other words: the model contains additionally channels, which react to release
to the neurotransmitter (literally they are opening, hence their conductance is decreasing - see result
of eq (1.9)) with time constant τsyn = 1 mS. The parameters are the same like in the previous case.
Stimulation current Istim = 0 , Vsyn = 10 mV . In time t = 1 ms the neurotransmitter is released,
hence gsyn(1 + δ) = 1. Initial conditions V (1) = 0, Isyn = 0, gsyn(1) = 0, gL = 1.

τsyn
dgsyn(t)

dt
= −gsyn(t) + δ(t− tpre − tdelay) (1.9)

Task 1.2 (0 b) Plot dependence V (t), ICl(t), IC(t), Isyn(t). Explain trends and compare them with
the previous task 1.1.

Figure 2: EPSP: Synapse model with leakage Cl channel

5

1.2 Mebrane and synapse modelling 2: Hodgkin-Huxley
Exercise 1.3 (Hodgkin-Huxley) The taks is analysis of Hodgkin-Huxley(HH) model depicted in
figure 3. Compared to the previous models, HH incorporates variables which are dependent both on
time model and voltage, hence Na+ a K+ channels are controlled by voltage. The model is based on
the following set of eqautions

EK

KRNaRRL

C

Iext

E EL Na

External input

Capacitor Resistance of ion channels

Reversal potentials of ion
channels

EK

Figure 3: Hodgkin-Huxley model. Each branch represents resting potential a and resistivity of a
particular channel: EL, RL - channels always opened (”Leakage channels“), ENa, RNa - sodium
channels controlled by voltage , EK , RK - calcium channels controlled by voltage.

Current in ion channels can be described by Ohm’s law:

Iion = ĝion(V − Eion)
(

= (V − Eion)/R̂ion
)
, (1.10)

where ĝion is the maximum conductance of ion channel
Next, we introduce auxilary variables dependent on voltage and time n(V, t), m(V, t), h(V, t),

resulting in the following conductances:

ĝK(V, t) = gKn
4 (1.11)

ˆgNa(V, t) = gNam
3h (1.12)

Combining eq.1.12-1.10 we get

C
dV
dt = −gKn

4(V − EK)− gNam
3h(V − ENa)− gL(V − EL) + Iext(t) (1.13)

Next, we define time constants

τn(V)dn
dt = −[n− n0(V)] (1.14)

τm(V)dm
dt = −[m−m0(V)] (1.15)

τh(V)dh
dt = −[h− h0(V)] (1.16)

For each variable we get

dx

dt
= − 1

τx(V) [x− x0(V)], x ∈ {n,m, h} (1.17)

and after substituing Euler’s numerical integration we get

x (t+ ∆t) =
(

1− ∆t
τx

)
x(t) + ∆t

τx
x0. (1.18)

6

Initial conditions hold:

x(0) = α

α+ β
, τx = αβ, x ∈ {n,m, h} (1.19)

αn = 10− V
100

(
e

10−V
10 − 1

) , βn = 0.125e− V
80 (1.20)

αm = 25− V
10
(
e

25−V
10 − 1

) , βm = 4e− V
18 (1.21)

αh = 0.07e V20 , βh = 1
e

30−V
10 + 1

(1.22)

Task 1.3 (0 b) Download model implementation file cv3_HH.m from course website. Visualize time
output of the model (membrane voltage V), which is excited by the constant current Iext = 30µA/cm2

(default settings). Implementation works from time -30ms to get steady system. Plot output for time
0− 100ms.

Task 1.4 (1 b) Expand visualization by adding time trend of conductance g for each channel type
(describe different time series using legend)

Task 1.5 (2 b) Visualize dependence of firing frequency on external constant current Iext - so called
activation or transfer function. Set the input current Iext in the range 0 − 15 µA/cm2. You should
compute firing frequency after reaching the steady state (hint: use fce diff, find alt. findpeaks).
Which shape does the activation function resamble? For which values of the current Iext will the shape
of the activation function change significantly (perform a discussion)?

Task 1.6 (2 b) Adding noise to the input current will change behaviour of the model. Visualize
membrane voltage V and activation function as a response to input current with added noise. Use
Iext = 30µA/cm2 and white noise (randn) with the standard deviation 60 and zero mean, for plotting
activation function use Iext = 〈0, 15〉µA/cm2, noise with standard deviation 30. How did the resulting
output change? Try out for different noise levels.

Task 1.7 (1 b) Plot ISI histogram for the input current Iext = 30µA/cm2 and noise with standard
deviation 60. Compare to the case with zero noise and discuss the results.

7

1.3 Spike train modelling
We showed in the previous tasks, how does noise on the input affect temporal and frequency character-
istics of a neuron. Noise signal on neuron input is much more realistic than constant current - mainly
due to the fact that neuron input is formed by a summary signal from many synapses of pre-synaptic
neurons, connected to its dendrites. In this section, we will simulate such signal and use it as input to
a neuron model.

You have learned in the lectures, that interspike intervals (ISI) of typical cortical neurons exhibit
log-normal distribution. Before we start modelling spiketrains, let us verify this on a model.

Exercise 1.4 (LIF neuron model and Poisson spiketrain) The complex models from previous
exercises, such as Hodgkin-Huxley, are able to model the action potential shape based on physiological
modelling of ion channels’ behavior. If we want to model more complex neural networks, even simpler
models (such as Wilson model) are overly complex for such application. When modelling neural
networks, the accurate shape of action potential is not as important (we will see it can be simply
modelled using α functions) as the spike timing. For these purposes, the Leaky integrate and fire
neuron is often used. The basics of this model includes simple integrator, which is reset to resting
potential when a preset threshold is exceeded.

Task 1.8 (1 b) Download LIF model from the course website - cv4_lif.m. Show model output for
constant input current (default setting). Plot output voltage, along with spike times (= reset times)
over time. Compute firing rate and display an ISI histogram.

Task 1.9 (2 b) Modify previous task by applying input noise with mean 12 and standard deviation
100, instead of constant current (function randn). Simulate for times in the range 0 − 105 and
integration step dt = 0.01. Set bin number to 60 when computing histograms. Convert histograms to
probability density function estimates (

∑
pdf = 1).

Task 1.10 (3 b) Fit lognormal distribution to the data from the previous task. The lognormal distri-
bution is given by:

pdf lognormal(x;µ, σ) = 1
xσ
√

2π
e− (log(x)−µ))2

2σ2 (1.23)

One possible solution would be to fit the analytical pdf to ISI histogram from the previous task. This,
however, would be completely wrong, as one point in the histogram does not mean one, but many data
points (think about this for a while!).

Thus, we will use the function lognfit, which estimates lognormal distribution parameters using
maximum likelihood estimates. Based on these estimates, calculate the lognormal pdf and display along
with the histogram. (You will probably have to adjust the bin number to get a good representation)

8

2 Real data analysis, modelling of neuronal populations
In this block, we will play with analyzing of real µEEG (micro-EEG) data, recorded from brains of
Parkinson’s disease patients. We will compare the data to our simulations from the previous block and
we will analyze correlation with other biosignal - the electrooculogram (EOG).

Further in this section we will simulate more complicated network of artificial neirons and (so called
spiking network) and analyze its behavior under varying conditions.

2.1 Spiketrain modelling II
Exercise 2.1 (Lognorm spiketrain) We showed in the last exercise how does LIF neuron model
respond to a noisy input. In this task, we will show that real signal, produced as a combination of
presynaptic potentials, really resembles gaussian noise in many ways.

You know from the lectures, that the Poisson spiketrain, - a spiketrain where the number of events
per unit time follows poisson distribution - has exponential distribution of interspike intervals (ISIs).
Further, the physiological constraints prevent neurons from firing earlier than after the refractory period
- a fact we have to incorporate in our implementation.

In this example, we will generate a set of spiketrains using exponential distribution, taking refractory
period into account, and mix them to create an artificial muEEG signal.

Task 2.1 (1 b) Generate 100 000 ISI intervals from the exponential distribution with mean E[X] =
50ms (hint: use expnrd function). Display ISI histogram.

Remove all ISI values lower than the refractory period of 1ms. Display ISI histogram and compare
to the one before refractory period filtering. How many spikes were removed? Compute mean firing
rate and coefficient of variation before and after filtering and compare.

Convert the resulting ISI ingervals to a spiketrain (logical vector with ones at spike positions hint:
cumsum). Use time step of dt = 0.1ms. Check for errors by plotting the result

Task 2.2 (1 b) To convert binary spiketrain to time course, we will use convolution with α−function,
which will play the role of spike template.

Generate time course of the α− function according to:

I(t) = c · t · e− t
tpeak (2.1)

c = gpeak
tpeak

e1 (2.2)

where gpeak = 0.5, tpeak = 1ms. Compute the function values for times in the interval t ∈ 〈0, 30〉, the
time step should be again dt = 0.1ms. Plot the output. After assessing the result, you may reduce
the time range if appropriate.

Convolve the alpha function with Poisson spiketrain from the previous task (conv). Check the
result again by plotting.

Task 2.3 (1 b) Divide the time course from previous task into 1000 signals of the same length(reshape).
In this task, we will simulate mixing of presynaptic potentials (represented by the simulated neurons),
at dendrites. The resulting summary signal will be given by a linear combination of the individual
spiketrains. Coefficients will be given by weights w, which will be modelled as random from exponential
distribution with λ = 1.

In order to have better control of the amplitude of the resulting signal, we will normalize the weights
so that their sum equals a constant k. Set the value k = 100.

Combine the 1000 spiketrains into one signal, using a linear combination with weights w. You can
represent the linear combination as matrix multiplication (elegant + much faster in Matlab).

Compare the resulting signal to gaussian noise (time and distribution). What are the key differ-
ences?

Task 2.4 (1 b) Apply the signal from previous task to the input of LIF neuron from Exercise and
observe the output. What changes do you observe when you change the normalizing constant k = 150.
What does the ISI histogram look like, now? Investigate and comment behavior of the LIF neurin.

9

2.1.1 Artificial and real signal - comparison

We have now generated artificial signal as a combination of Poisson spiketrains, convoluted with alpha
function. In these tasks, we will compare the simulated signal to real µEEG, recorded from basal
ganglia of a Parkinson’s disease patient during deep brain surgery. We will show, that this simple
method of data generation is not far from reality.

Task 2.5 (1 b) Use artificial signal generated in the previous task. It is a time course with sampling
rate fs = 10kHz. Download µEEG data from the course website. The .mat file contains variable
realmEEG with 1s recording of activity around Thalamus (fs = 24kHz). Display both signals in
parallel plots (with correct time coordinates). Investigate both signals.

Task 2.6 (1 b) The real signal, used in the previous task, was an extracellular recording. Conversely,
the signal we generated was a simulation of EPSP signal (that is why we used the alpha function)!
In this task, we will generate artificial extracellular signal in a similar way. Use real spike shapes,
downloaded from the course website instead of the alpha function. There are 5 spike shapes in the data
sample - use random spike shape and random amplitude for each simulated neuron. In your simulation,
use same sampling frequency as in the real signal, i.e. fs = 24kHz. Generate the composite signal
and compare it to the real microelectrode recording.

Task 2.7 (1 b) From visual comparison of time courses of real and simulated data, we get a rough idea
of how similar these two signals are. Your next task is to try out some quantitative comparisons. Choose
and implement appropriate methods of signal comparison. You can use e.g.: frequency spectrum,
amplitude distribution etc.

10

2.2 Real data processing: Spike sorting
Exercise 2.2 (Spike sorting) In this exercise we will focus on spike detection and spike sorting (i.e.)
in real µEEG data.

Spikes and background noise

The real µ EEG data we will use in this exercise were recorded using microelectrodes placed in the brain
of patients suffering from Parkinson’s disease, specifically in the area of the thalamus. As we know,
the recorded signal consists of activity of a large number of neurons in the vicinity of the electrodes -
this is source of a background noise5 - from which we can get an approximate idea of the activity of the
population in the area. However, we are usually interested in neurons in the vicinity of the electrode
- here we can recognize individual action potentials of individual neurons and thus accurately analyze
their activity. The recorded AP’s (spikes) from near neurons have higher amplitude and we are usually
able to distinguish them from the background - this procedure is called spike detection. Then, to
assign individual spikes to different neurons we need a method called spike sorting, which usually uses
unsupervised learning techniques based on the spike shape.

Spike sorting

Suppose we have a µEEG signal with detected spikes. Our goal is to classify spikes to individual
neurons. Due to the spatial arrangement of different neurons relative to the electrode (plus possibly
their individual characteristics) the shapes of recorded spikes originating in different neurons differ.
This can be used to sort spikes on the basis of their shape. Given that the correct solution is unknown
and we can not know (the number of neurons in the vicinity of the electrode can not be detected by the
available imaging techniques, as well as correct assignment of individual spikes to the neurons), we need
to use unsupervised learning methods, namely clustering. Regarding the choice of features describing
the shape of individual spikes, we have a great range of options, including amplitude, duration, as well
as various transformations - such as wavelet, fourier and many more.

Dependence of AP’s shape on location to electrodes. 6

In this task we will use for spike detection a method designed by R.Q. Quiroga that is available
from WaveClus toolbox7. The methods detects each AP based on amplitude tresholding. The treshold
is determined by the number of standard deviation. Furthremore, signal is filtered by band-pass filter
in range 300− 3000Hz. You can download a script cv7_amp_detect.m.

5Frequently the noise carries the majority of the signal energy
7source code is available here http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm. Those who are

interested can find more information here, specially in ”Introduction“)

11

http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm

Task 2.8 (1 b) Download cv7_spikesorting_data and load it into the MATLAB. Sampling fre-
quency is again fs = 24kHz. Plot the data and roughly estimate the spikes position. How long is
record (in seconds)?

Download a script for spike detection cv7_amp_detect.m. Launch the sript using microelectrode
data and plot the time series along with spikes detected with the treshold used for detection (output
variable is index and treshold is thr). .

Task 2.9 (1 b) Variable spikes returns spikes detected in rows sorted by max value. Plot a few
first spikes and estimate the number of neurons. Design at least one feature that will be used for
spikesorting. Set manually threshold and sort the spikes according your feature. Plot the average
spike for each group.

Task 2.10 (4 b) Now just imagine the task when we need to sort the signal without manually setting
of the treshold. Suggest and calculate at least one more feature. Plot the spikes in feature space and
color them based on your sorting from the previous task. Was your threshold calculated well?

Cluster your features by k-means algorithm (function kmeans from Statistics Toolbox). Estimate
the number of clusters and show results in feature space. Next, show all signals and average signal for
each cluster.

Analyse clustering results. Do you consider your features as sufficient? Is there any possible
improvement?

2.3 Analysis of real data: Eye movements
Exercise 2.3 (Eye movements) In this exercise, we will show how to analyze reaction of single
neuron to a stimulus. The data comes from experiments, where we evaluate connection between eye
movements and neuronal activity in human Basal gangial. If the activity of given neuron correlates
with eye movements, we should see a change in its firing pattern when eye movements are present. The
data come from ten repetitions of the following experiment: The subject is looking at a PC screen,
which is black at the beginning. At given time, a white cross appears and the task of the subject to
focus at it. Electrooculogram (EOG) is recorded throughout the experiment using electrodes placed
near subject’s eyes, as well as micro EEG activity in the area of basal ganglia. Once the experiment is
over, the data goes through spike detection and spike sorting and neurons, correlating with EOG are
identified.

Task 2.11 (2 b) Download exercise data from the course website. Data contain recording of activity
from singe neuron in ten repetionions of the same experiments + corresponding EOG. The variable
firingTimes contains spike times of given neuron, relative to the time of stimulus (cross appears).
Variables eogTimes and eogVals specify corresponding EOG signal for each repetition.

Note: plotting of EOG and corresponding spike times can be done as follows:

plot(eogTimes{1},eogVals{1});
hold on;
stem(firingTimes{1},ones(size(firingTimes{1})))

Plot firing of the neuron in time, aligned with the stimulus (time 0). What can we say about the
activity? How many times did the neuron fire during all repetitions before and after the stimulus?

Task 2.12 (4 b) Use an appropriate way to aggregate activity over all repetitions. (e.g. number of
spikes in time windows, instantaneous firing rate, etc.). How does the activity change right after the
stimulus? Is there some trend even before the stimulus? How long does it take for the activity to drop
and how long to return to original level? Be creative!

12

3 Information coding and transfer in the brain
In this block, we will model some of the processes taking part in transferring and storing information
in the brain. We will go through the basics of cognitive modelling and we will try out the so-called
Self-organizing maps.

3.1 Hebbian learning
All simulations that we did until now were using fixed synaptic weights - such approach ignores the
synaptic plasticity, i.e. the adaptation of neuron’s input weights. One model for weight adaptation
is based on correlation of pre-synaptic and post-synaptic firing and is based on the theory by Donald
Hebb.

Exercise 3.1 (Hebbian learning) This exercise will be based on the codes implemented for 2.1
(”Lognorm spiketrain“), which will be adapted to include synaptic weight adaptation based on Hebb’s
learning. Simply put, the theory states that synapses, that fired shortly before the post-synaptic spike
was emitted, are strengthened, while those firing after the post-synaptic spike are weakened.

The weight adaptation will be based on the following equation:

wn+1 = wn + δw − fdecay, (3.1)

where wn are actual synaptic weights, fdecay is forgetting constant and δw is weight change computed
according to:

δw = αlearn · pm · e−pm∆t
τ (3.2)

∆t = tpost − tpre (3.3)
pm = sign(∆t) (3.4)

Task 3.1 (3 b) Implement function for weight adaptation based on 3.2. Let the parameters be τ = 40,
α = 1, display the function in the range 〈−100, 100〉ms (do not forget axis labels). Comment the result.

Task 3.2 (7 b) In this task, we will use code for LIF neuron, fed with a large number of pre-synaptic
spiketrains from exercise 2.1. Implement code for Hebbian weight adaptation. All synaptic weights
will be adapted every time the LIF neuron fires. Use constatnts from the previous task, set forgetting
constant to fdecay = 0.01 a and set initial sum of weigthts to k = 600.

Display time course of the summary pre-synaptic potential in time, including post-synaptic spikes,
generated by the LIF neuron. Display the changes of weights over time (you can use e.g. imagesc
function). How do the weights change over time? What is the change during the first 500ms? And
during the following time? What effect does the value of forgetting constant have? Experiment with
parameter settings and comment the results.

3.2 Simulated neural networks
The previous exercises focused mostly on modelling and examination of single-neuron models and their
behavior. We showed factors that affect the variability of firing pattern of a neuron. It is assumed that
firing pattern and spike timing is actually the main information carrier in the brain. To get a bit closer
to the behavior of real neural networks, we will study artificial spiking neural networks, composed by
many neurons.

Exercise 3.2 (Spontaneous activity) In this exercise, we will model spontaneous activity of a ran-
dom neural network, composed by Izhikewich neurons - we will reproduce outputs of original Izhikewich
research paper (available online: http://www.izhikevich.org/publications/spikes.pdf). The re-
sult will be a very brief text document, summarizing results of individual tasks.

Task 3.3 (3 b) Study Izikhewich model from the original research paper. Explain, what do the
variables u and v mean and what do the constants a, b, c, d do.

Study the bottom two lines of Fig 2. What do these plots represent? What mainly affects the time
courses?

13

http://www.izhikevich.org/publications/spikes.pdf

Task 3.4 (3 b) Copy and paste source code of simulation of a random network of 1000 neurons from
the paper to matlab. Run the code and investigate it thorougly. Answer the following simple questions:

1. What types of neurons (and how many) have been used in the simulation

2. What unit do the constants a, b, c, d have and what does their size correspond to?

3. What represents the constant S and which way does it implement different neuron types?

4. How is the input current of different neuron types modelled?

5. Which part of the code represents resetting the membrane voltage to resting potential when a
threshold voltage is achieved, as defined by Equation (3)?

Task 3.5 (4 b) Extend the implementation of the paper: add storing of post-synaptic potentials of
individual neurons (it already stores firing times). Extend the program with the following (put the
output figures in the report)

1. Display the time course of output voltage on 2 neurons of different type (select whichever you
want). Are there any key differences in the time course?

2. Display power spectral density (e.g. pwelch) of averaged output voltage of the whole population.
Restrict the spectrum to the range 1 − 100Hz. What can we say about the character of the
spectrum? What is the activity like in terms of brain waves (How about e.g. the alpha range:
8− 13Hz)? Place your comments into the report.

3.3 Self-organizing maps (SOM)
In the previous exercises, we have understood and experimented with weight adaptation - the network
learning process. In this exercise, we will show how can a neural network be used for data clustering.
This exercise will be based on self-organizing maps (SOM, sometimes also Kohonen networks/maps).
We will use Matlab’s builtin Neural Network Toolbox.

Unsupervised learning
Unsupervised learning is a machine learning technique which is often used for finding hidden structure
in data. Typical example is clustering: we let the model to automatically divide the data into groups,
based on their similarity. A well known example of clustering algorithm is k-means, which we already
used in the spike-sorting exercise. The result of k-means clustering is a strict division of input data
into classes, which is not necessarily always what we need in data mining.

SOM
Compared to k-means, we can imagine SOM as a projection of source data to a space of lower dimension.
This can be useful for data visualization or aggregation. SOM is composed of neurons, distributed
in space. Apart from position in space, each neuron is characterized by a weight vector of the same
dimension as the input data (which is equal to the feature count).

The aim of SOM learning is to achieve similar response of neighboring neurons to given stimulus.
At the beginning, all weights are initialized randomly8. For each input sample (=vector of feature
values), we identify the neuron with weight vector closest to the input sample. This neuron is declared
a winner. Weight vectors of all neurons in the neighborhood of the winner vector are adapted towards
current input vector. The result is heavily dependent on the neighborhood function, defining weight
adaptation step for given distance from the winner neuron. During learning, input data are presented
to the network in multiple cycles, so that higher network consistency is ensured.

When the network is applied (i.e. during classification phase), weights are held fixed. For each input
sample, distance between the input vector and each neuron’s weight vector is calculated. Typically,
this distance is visualized on a color scale. Based on this visualization, it can be defined which region
of the network responds to specific input type.

8Better initialization can be achieved e.g. by principal component analysis (PCA) or heuristic knowledge about the
data.

14

Exercise 3.3 (SOM: Iris dataset) We will make use of the classic Fisher’s iris dataset http://en.
wikipedia.org/wiki/Iris_flower_data_set, representing blossom properties of three species of iris
(flower), which are rather hard to distinguish visually.

Task 3.6 Perform clustering of the iris dataset using SOM. Visualize the results. Follow this proce-
dure:

1. Load iris dataset from matlab repository using load iris_dataset. This will load the vari-
ables irisInputs (feature values) and irisTargets (true labels - iris species, annotated by
an expert)

2. Initialize the SOM: net = selforgmap([8 8], "topologyFcn","hextop");. What do
the individual parameters mean? What does topologyFcn mean and what possibilities does
the toolbox offer? Try out different topologies and visualize them using plotsomtop.

3. Learn the network on iris data using net = train(net,irisInputs);

4. Visualize position of individual neurons in the dimension of their weights using plotsompos

5. Visualize hit counts of individual neurons using plotsomhits. Show the same plots for different
classes (iris species, specified by irisTargets). Compare the plots

6. Try out other possibilities of SOM visualization (you can use the GUI window which opens during
learning)

Exercise 3.4 (SOM: wowel clustering) The aim this exercise is clustering of vowels using SOM
and visualization of the results.

Task 3.7 Download publicly available dataset ”Vowel Recognition“ from UCI repository http://
archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data).
You need specifically the filevowel−context.data, other files are useful for data understanding.

Load the file to matlab using D = importdata filePath/vowel−context.data. Data in-
stances (examples) are in rows, attributes (features) in columns. We will need the 4th-13th feature.
We will handle the last column separately - these are the data labels. We will also throw away the
first three features. We will transpose the data (’).

The next step is SOM initialization using reasonable parameters and learning. Observe the results
for different classes and compare the results. The procedure is similar to the previous exercise 3.6.

15

http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data)
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data)

Bibliography
[1] David Fitzpatrick William C. Hall Anthony-Samuel LaMantia Leonard E. White Dale Purves,

George J. Augustine. Neuroscience. Sinauer Associates, Inc., 5th. edition edition, 2011.

[2] Michael L. Hines Nicholas T. Carnevale. The Neuron Book. Cambridge University Press, 2006.

[3] Thomas Trappenberg. Fundamentals of Computational Neuroscience. Oxford University Press,
USA, June 2010.

[4] Werner M. Kistler Wulfram Gerstner. Spiking Neuron Models: Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.

16

