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1 Introduction 2

1 Introduction

This report describes the handling of mixed continuous/discrete models in Modelica 1.1a. Such types of
models are also calledhybrid systems. It is an updated version of the draft proposal from October 30, 1998,
where the changes decided on the Modelica meetings of Nov. 5.–7., 1998 and of Feb. 4.–6., 1999, have been
incorporated. Essentially the following features are discussed: (a) Basic elements to model, e.g., sampled
data systems or limiters and to synchronize the discrete and continuous parts of a model with each other.
(b) A new technique to handle variable structure systems, such as ideal diodes, ideal thyristors, Coulomb
friction, phase changes via parameterized curve descriptions of the element characteristics.

With respect to Modelica 1.0, there are nearly no changes in the Modelica grammar, but additional built-
in operators as well as modifications in thelanguage semanticsand in the formulation of ideal elements.
The most important changes are:

� The new operator for discrete variables is replaced by the more convenientpre operator, which
characterizes the left limit of a variable.

� Thenewoperator for continuous state variables is replaced by the more powerfulreinit operator.

� Variable structure components, such as an ideal diode, are defined in a fully declarative way.

� Theglobalevent iteration is removed and replaced by thelocal solution of mixed continuous/discrete
systems of equations. This is more efficient and reliable.

2 Basic language elements for hybrid models in Modelica

In this section the basic language elements for hybrid models in Modelica 1.1a are introduced to describe,
e.g., the connection of continuous plants and discrete controllers. In the following sections, generalizations
are discussed to handlevariable structuresystems in a declarative way.

2.1 Synchronous continuous and discrete equations

The central property is the usage of synchronous continuous and discrete equations based on the single
assignment rule, in order to have deterministic and automatic syncronization of the continuous and discrete
parts of a hybrid model via dataflow analysis. This idea was introduced in [Elmq93] as a generalization
of discrete synchronuous languages [Halb93], such as LICS [Elmq85], Lustre [Halb91], Signal [Gaut94]
which are designed to arrive at save implementations of realtime systems and for verification purposes.
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Figure 1: Continuous plant controlled by discrete controller.

A Modelica model basically consists of ordinary differential equations, algebraic equations and discrete
equations. A typical example is given in figure 1 where a continuous plant is controlled by a discrete linear
controller of the form

xc(ti) = A �xc(ti �Ts) + B � (r (ti)�y(ti)) (2.1a)

u(ti) = C �xc(ti �Ts) + B � (r (ti)�y(ti)) (2.1b)
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using a zero-order hold to hold the control variableu between sample instants (i.e.,u(t) = u(ti) for ti � t <
ti +Ts). This system is described in Modelica in the following way:

ẋp = f (xp;u)
y = g(xp)

whensample(0;Ts) then
xc = A �pre(xc) + B � (r �y)
u = C �pre(xc) + D � (r �y)

end when

wherexp is the state vector of thecontinuousplant,u is the plant input vector,y is the vector of measurement
signals,xc is the state vector of thediscretecontroller andr is the reference input. Thepre operator
provides the (known) value of a variable from the previous event instant. The equations in awhen clause
areconditionally activatedat event instants where the when-condition (here: sample(0;Ts)) becomestrue.

Operator ”sample“ triggers events at sample instants with sample timeTs and returnstrue at these
event instants. At other time instants it returnsfalse. Note, that the values of variables are kept until they
are explicitly changed. For example,u is computed only at sample instants. Still,u is available at all time
instants and consists of the value calculated at the last event instant.

The model above consists of the continuous equations of the plant and of the discrete equations of the
controller within thewhen clause. During continuous integration the equations of thewhen clause are
de-activated. When the condition of thewhen clausebecomestrue an event is triggered and the equations
within the when clause are activated. At every time instant, the activated equations expressrelationsbe-
tween variables which have to befulfilled concurrently. Particularily this means that at an event instant
it is assumed that the evaluation of the equations of the discrete equations is done in zero time. In other
words, time is abstracted from the computations and communications, i.e., computing and communicating
at an event instant take no time, see also [Gaut94]. If needed, it is possible to model the computing time by
explicitly delaying the assignment of variables, e.g.,

whensample(0;Ts) then
xc = A �pre(xc) + B � (r �y)
w = C �pre(xc) + D � (r �y)
u = pre(w)

end when

In this case, the assignment ofu is delayed for one sampling instant.
In order that the unknown variables can beuniquelycomputed it is necessary that the number of ac-

tivated equations and the number of unknown variables in the activated equations at every time instant
is identical. To getdeterministicbehaviour, this requirement has to be further restricted as seen by the
following example:

when condition1 then
close = true ;

end when

when condition2 then
close = false ;

end when

Whencondition1 andcondition2 never becometrue at the same time instant, we have deterministic
behaviour. However, when by accident or by purpose the two conditions becometrue at the same event
instant, we have two conflicting equations forclose and it is not defined which equation should be used.
In general, it is not possible to decide at compile time whether two conditions may becometrue at the
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same event instant or not. Therefore, we make the conservative assumption thatall equationsin a model
may be activated at the same time instant during a simulation. Due to this assumption, thetotal number of
(continuous and discrete) equations shall be identical to the number of unknown variables. This requirement
is called thesingle assignment rule. Application of this rule to the above example results in an error
message, because there aretwo equations to compute the single unknown variableclose which leads
potentially to conflicting requirements.

In order to rewrite this model, it is necessary to first give a more complete definition of thewhenclause:

when {condition1, condition2, ..., conditionN} then
...

end when

is identical to the following if clause

if edge (condition1) or edge (condition2) ... or edge (conditionN) then
...

end if

edge (condition) := condition and not pre (condition)

Note, that awhen clause can be used both inequation andalgorithm sections. With this general form of
thewhenclause the example can be rewritten into

when {condition1, condition2} then
close = edge (condition1);

end when

which results inone equation for the unknown variable. When the two conditions become true at the
same event instant, it can be seen thatcondition1 has a higher priority thancondition2 , so that the
previously conflicting requirements are resolved.

The present definition of a hybrid model is declarative. To perform a simulation, an explicit evaluation
sequence has to be determined. By permutation of equations and variables and by symbolically solving
equations for the desired unknown variables it is possible to arrive at an explicit forward sequence of assign-
ment statements. This transformation is called BLT-partitioning (= Block Lower Triangular partitioning),
see e.g., [Duff86].

Note, that sorting via BLT transformation is performed by assuming that the constants and input signals
of the model, the continuous states and thepre values areknown, all other variables are unknown and that
all when clauses are active. Applying BLT-partitioning to the introductory example of this section results
in:

y = g(xp)

whensample(0;Ts) then
xc = A �pre(xc) + B � (r �y)
u = C �pre(xc) + D � (r �y)

end when
ẋp = f (xp;u)

Given the continuous statesxp, the reference inputsr and the previous values of the discrete statespre(xc)

it is possible to compute all other unknown variables, both when the equations of thewhenclause are active
or when the equations are not active.

BLT-partitioning may identify localsystems of equationswhich have to be solved simultaneously, e.g.

u= : : : ;
whencondition1then
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y = k1 �x + u
end when

whencondition2then
x = k2 �y

end when

When the two conditions becometrue at the same time instant this leads to the unique solution

y :=
1

1�k1 �k2
u

x := k2 �y

However, when only one of the conditions becomestrue, no unique solutions exists, because only one
equation for two unknown variables is present. One could use the previous value ofx or y to remove one of
the unknowns, but this would lead to a non-deterministic behaviour, because there is no rule which of the
two variables should be used and therefore the choice would be arbitrary. As a consequence, we have to
reject models containing algebraic loops when the equations of a loop belong to differentwhenclauses. In
asynchronous languages, this situation corresponds to adeadlock, because the two ”when-processes“ refer
to each other in a non-resolvable way. In other words, the synchronous principle allows to detect deadlock
situations already at compile time. To be more precise, here is the exact rule for ”deadlock“ detection:

Models are only valid ifall local algebraic loops in the BLT-form haveoneof the following
properties:

� All equations of one loop donot belong to awhenclause.

� All equations of one loop belong towhenclauses which havesyntacticallythe same when
condition.

It is desired to check at compile time whether twowhen clausesalwaysoccur at the same time instant, in
order that the equations of the twowhenclauses can appear in the same algebraic loop. Since such a check
cannot be done in general, we take the conservative approach and just identify a subset of the possible
ones by requiring that the when conditions have to be syntactically equivalent (e.g. the same Boolean
variable). The minor drawback is that there may be cases where the translator reports an error, although a
deadlock cannot occur. By simply rewriting thewhenconditions of the correspondingwhenclauses into a
syntactically identical form it is possible to fix such a situation.

Above, we discussed systems of equations containing only Real unknown variables. In the following
sections, this approach is generalized to situations where Boolean and Integer variables also appear as
unknowns.

To summarize, thesynchronousprinciple of hybrid systems is based on the following requirements:

1. At every time instant, the active equations express relations between variables which have to be
fulfilled concurrently.

2. Computation and communication at an event instant does not take time.

3. The total number of equations is identical to the total number of unknown variables and all unknown
variables can be uniquely determined from this set of equations (= single assignment rule).

4. The evaluation sequence of the equations is determined by equation sorting (BLT transformation).

5. Local algebraic loops in the BLT-form between equations of differentwhen clauses signal a ”dead-
lock“ situation which has to be rejected since a unique solution potentially does not exist at some
time instants.
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This approach of handling hybrid systems has the advantage that the ”synchronization“ between the con-
tinuous and discrete parts is automatic and always leads to a deterministic behaviour without conflicts.
Furthermore, some difficult to detect errors of asynchronous languages, such as deadlock, can often be
determined at compile time already.

The disadvantage is that the types of systems which can be modeled is restricted. For example, general
Petri nets cannot be modeled because such systems have non-deterministic behaviour. Petri nets can only
be described if transition priorities are introduced. For some applications another type of view, such as a
process oriented type of view or CSP, may be more appropriate to model a discrete component. It may be
more complicated to model such systems with the sychronous approach. Especially, the single assignment
rule sometimes leads to more difficult code because explicit priorities of conditions have to be defined. If
a variable should be assigned from different components this may require to introduce a special ”priority“
object which handles this situation.

2.2 Relation triggered state and time events

During continuous integration it is required that the model equations remain continuous and differentiable,
since the numerical integration methods are based on this assumption. This requirement is often violated
by if clauses. For example a simple two point controlller with inputu and outputy may be described by the
following equations:

y

u  u  y

y 0

- y 0

Figure 2: Two point controller.

block TwoPoint
parameter Real y0=1;
input Real u;
output Real y;

equation
y = if u > 0 then y0 else -y0;

end TwoPoint

At point u=0 this equation is discontinuous, if the if-expression would be taken literally. A discontinuity or
a non-differentiable point can occur if a relation, such asx1 > x2 changes its value, because the branch of
an if statement may be changed. Such a situation can be handeled in a numerical clean way by detecting the
switching point precisely, halting the integration, selecting the corresponding new branch, and restarting the
integration, i.e., by triggering astate event. This technique was developed by Cellier [Cell79]. For details
see also [Eich98], chapter 6.

In general, it is not possible to figure out by source inspection whether a specific relation will lead to
a discontinuity or not. Therefore, we take the conservative approach and assume that every relation will
introduce a discontinuity or a non-differentiable point in the model. Consequently, relations in Modelica
automaticallytrigger state events at the time instants where their value is changed. This means e.g., that
modelTwoPoint is treated in a numerically ”clean“ way.
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In some situations, relations do not introduce discontinuites or non-differentiable points. Even if such
points are present, their effect may be small, and it may not hurt to just integrate over these points. Finally,
there maybe situations where a literal evaluation of a relation is required, since otherwise an ”outside
domain“ error occurs, such as in the following example, where the argument of functionsqrt to compute
the square root of its argument is not allowed to be negative:

y = if u >= 0 then sqrt(u) else 0;

This equation will lead to a run time error, becauseu has to become small and negative before thethen-
branch can be changed to theelse-branch and the square root of a negative real number has no real result
value. In such situations, the experienced modeler may explicitly require a literal evaluation of a relation
by using the operatornoEvent():

y = if noEvent (u >= 0) then sqrt(u) else 0;

Discrete and nondiscrete variables

Time varying variables in Modelica may either change at event instantsonlyor at all time instants, especially
during continuous integration. The former variables have to be declared asdiscrete and the latter as
nondiscrete . Without explicit declaration, the following default values are assumed:

Base Type Variability
Real nondiscrete
Boolean, Integer, String discrete

Therefore in the following example

model TestDiscrete
parameter Real y0=1;
input Real u;

Real y1, y2, y3;
Boolean b1, b2;

nondiscrete Boolean b3;
equation

b1 = u > 0; // fine , b1 is discrete
b2 = noEvent (u >= 0); // error, b2 is discrete
b3 = noEvent (u >= 0); // fine , b3 is nondiscrete

y1 = if b1 then y0 else -y0;
y2 = if b2 then sqrt(u) else 0;
y3 = if b3 then sqrt(u) else 0;

end TestDiscrete

It is an error that thenoEvent operator is applied in the relation to computeb2 , becauseb2 is adis-
crete variable (= only to be changed at event instants) whereasnoEvent (u >= 0) may change its
value during continuous integration. Therefore,b2 has to be explicitly declared asnondiscrete , as
done forb3 , in order to signal to the translator that the modeller takes responsibility for the introduced
discontinuity. Note, that the condition of awhen clause has to be a discrete expression, i.e., it is guaranteed
that the equations of thewhen body are never evaluated during continuous integration.

Time events

State event detection requires an iteration procedure during simulation. When a relation is just a function of
time, the time instant of the event can be determined in advance. This enhances the efficiency considerably,
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because no iteration is needed to determine the event instant. Therefore, it is important to handle this special
case differently: In Modelica, the modeler can expect that the following special relations are treated as time
events1:

time >= discrete expression
time < discrete expression

The left variable of the relation needs to be the predefined variabletime, whereas the right side of the
relation needs to be an expression which evaluates to a new value at most at event instants. This restriction
is important, because only then it can be guaranteed that the value of the next time instant does not change
during continuous integration. This is a prerequisite, because the next time event must be known before the
integration is restarted. Example:

...
parameter Real sampleTime = 0.1;
discrete Real nextTime(start = 0);

equation
...
when time >= pre (nextTime) then // sampled data system

nextTime = time + sampleTime;
...

end when ;
...

SincenextTime is declared asdiscrete Real , the Modelica translator knows that the value of this
variable can only be changed at event instants and therefore the expressiontime >= pre (nextTime)
can be transformed into a time event. Note, that the previously introducedsampleoperator is an alternative
to the construction of a sample data system above. For reasons which will become clear in the next section,
thesampleoperator is slightly more efficient.

2.3 Left and right limit of a variable (operator pre)

In the previous sections, thepre operator was introduced informally as access operator for the previous
value of a variable. In this section, the exact semantics of this operator is discussed. In particular, thepre
value of a Real, Integer or Boolean variable y is defined to be theleft limit and y is defined to be theright
limit at a time instantt:

pre(y) � y(t�) (2.2a)

y � y(t+) (2.2b)

It follows that pre(y) = y if y(t) is continuousat time instantt. As a consequence, during continuous
integrationpre(y) = y and only at event instants we may havepre(y) 6= y. This definition has several
consequences:

1. The return result of thepre operator is treated as aknownvariable which may be used everywhere
where a known variable is allowed, especially inwhen clauses and in continuous equations. At the
start of the integrationy= pre(y) = y:start.

2. At event instants, the whole model is evaluated one time. Before the event restart, allpre values are
updated in the form

pre(y) := y (2.3)

in order that during continuous integration no variable is discontinuous.

1To be precise, it is a “quality of implementation” of the Modelica translator whether these relations are transformed to time
events. However, translators without this proporty will produce unnecessarily unefficient code.
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3. If thepre operator is used outside of awhenbody in a discrete equation or in the condition of awhen
clause, potentially a discontinuity is introduced after the event restart, as sketched in the following
example:

...
off := s < 0 or pre (off) and not fire;

der (x) := if off then -x else -2*x;

if event () then // implicitly present at end of code
pre (off) := off

end if

At an event instantpre (off) may befalse at the beginning of the event andoff may become
true . Sincepre (off) is updated before the event restart,pre (off) changes fromfalse to
true . The integrator will make a first step. At the next time instantoff is recalculated. Since
pre (off) is no longerfalse , another value foroff may be computed and the value of the
derivativeder (x) may change discontinuously.

To avoid such situations, an iteration has to take place at an event instant as long aspre variables in
equations outside ofwhen bodies change. In other words, the above example is actually realized in
the following way:

loop
...

off := s < 0 or pre (off) and not fire;
der (x) := if off then -x else -2*x;

if event () then // implicitly present
if off == pre (off) then break;
pre (off) := off

else
break;

end if
end loop

2.4 Event synchronization

Event synchronization means that somewhen-bodies, probably present in different components, shall be
evaluated at the same event instant. In simple cases, event synchronization is realized by just using the
same variable names in the corresponding models and connectors, e.g.:

Boolean sampleEvent;
equation

sampleEvent = sample (0,2); // sample every 2 seconds
...

when sampleEvent then // set of equations 1
...

end when ;
...

when sampleEvent then // set of equations 2
...

end when ;

In Modelica there is no guarantee that twodifferentevents occur at the same time instant, e.g.:
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fastSample = sample (0,1);
slowSample = sample (0,5);

In exact arithmetic, Boolean variablesfastSample andslowSample aretrue at thesameevent in-
stant every five seconds. However, in Modelica this behaviour is not guaranteed. If such a property is
desired, the synchronization has to beexplicitly modeled, e.g., by using counters as in the following exam-
ple:

Boolean fastSample, slowSample;
Integer ticks(start=0);

equation
// define fastest sampling rate

fastSample = sample (0,1);

// define 5-times slower sampling rate
when fastSample then

ticks = if pre (ticks) < 5 then pre (ticks)+1 else 0;
slowSample = pre (ticks) == 0;

end when;

// define equations for the different sampling rates
when fastSample then // fast sampling

...
end when ;

when slowSample then // slow sampling (5-times slower)
...

end when ;

TheslowSample when clause is evaluated at every 5th occurrence of thefastSample when clause
by using the counterticks to count how often thefastSample event occured.

Modelica does not have anexplicit eventtype, although in some rare situations this may be useful. For
example, pushing a button of a hardware device may be abstracted in such a way that a Boolean variable
becomestrue at the time instant when it is pressed, and isfalse afterwards, until it is pressed again.
It would be most convenient, if a separate data type would be available for such cases. E.g. in [Sree91] a
complete discrete formalism is developed based on two data types:conditions(= Boolean variables) and
events(= Boolean variables which signal the occurence of an event and which aretrue only at event
instants). In Modelica, an event data type can be emulated by a Boolean variable where every change in its
value signals an event:

input Boolean b; // set event via "b = not pre (b)"
Boolean ev; // true only at event instants

equation
// Alternative 1

when {b, not b} then // action when event "b" occurs
...

end when ;

// Alternative 2
ev = edge (b) or edge ( not b); // define event "ev"

...
when ev then // action when event "ev" occurs

...
end when ;
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Usually an event occurs when a condition, such as a Boolean variable, becomestrue . As can be seen,
it is easy to trigger an event also in cases whenever the Boolean variable changes its value (as forb).
Alternatively, a Boolean variable can be defined in such a way, that it is only true at event instants, see the
definition of variableev .

2.5 Reinitialization of continuous states (operator reinit)

At event instants, a continuousstatex can be reinitialized before the restart using the built-in operator

reinit (x, expr);

to introduce a new equation

x = expr;

wherex is the new value of the state (= right limitx(t+) of the variable) andexpr is an expression to
compute this new value. For example, in the following model

block PT1reset
parameter Real T "time constant";
parameter Real k "gain";
input Boolean reset "reset state, when true";
input Real u;
output Real y;
Real x "state of block";

equation
der (x) = (u - x) / T;

y = k*x;

when reset then
reinit (x, 0.0);

end when ;
end PT1;

the first order blockPT1reset has an additional Boolean input signalreset to reset the state of this
block to zero, wheneverreset becomestrue .

On first view, thereinit operator breaks the single assignment rule because a new equation is intro-
duced but no new unknown variable. This would indeed be the case if just the equation

x = expr;

is added. However, the operator has the additional semantics that the previouslyknownstate variablex
is treated asunknownfor sorting. Therefore, BLT-partitioning sorts the equations in such a way that this
additional equation is placed before any other equation utilizingx . This feature allows for example to
realizeself-initializing blocks:

block PT1 "self-initializing first order filter"
parameter Real T "time constant";
parameter Real k "gain";
input Real u;
output Real y;

protected
Real x;

equation
der (x) = (u - x) / T;

y = k*x;
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when initial () then
reinit (x, u); // initialize, such that der (x) = 0.

end when ;
end PT1;

model TestPT1 // initialize all elements to stationary conditions
input u;
PT1 b1, b2, b3;

equation
b1.u = u;
b1.y = b2.u;
b2.y = b3.u;

end TestPT1;

The built-in operatorinitial () is true at the initial time. Therefore, statex of model blockPT1 is
initialized such that the internal statex is identical to the input signalu at the initial time, leading to a
vanishing first derivative ofx . In other words, this block is initialized in a stationary equilibrium condition,
independently of the actual input signal. If several of such blocks are connected together in series, as
shown in modelTestPT1 above, all of them are initialized in such a way2. A Modelica translator would
transform this system in the following evaluation sequence:

model TestPT1
input u;
PT1 b1, b2, b3;

algorithm
b1.u := u;
when initial () then

b1.x := b1.u;
end when ;
der (b1.x) := (b1.u - b1.x) / b1.T;
b1.y := b1.k*b1.x;

b2.u := b1.y;
when initial () then

b2.x := b2.u;
end when ;
der (b2.x) := (b2.u - b2.x) / b2.T;
b2.y := b2.k*b2.x;

b3.u := b2.y;
when initial () then

b3.x := b3.u;
end when ;
der (b3.x) := (b3.u - b3.x) / b3.T;
b3.y := b3.k*b3.x;

end TestPT1;

The reinit operator can also be used to modelimpulses. For example in figure 3 a ball is shown which
falls down under the influence of gravity and collides with the ground. The collision is approximated by an
impulse according to Newton’s law, such that the rebound velocity changes sign and is proportional to the
collision velocity with the coefficient of restitution as proportionality factor:

model BouncingBall1

2Note, that in Modelica 1.0 it was not possible to define such a behaviour.
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h

g

Figure 3: Bouncing ball.

parameter Real e(min=0,max=1) = 0.5 "coefficient of restitution";
parameter Real g=9.81 "gravity constant";

Real h "height";
Real v "velocity";

equation
der (h) = v;
der (v) = -g;

when h <= 0 then
reinit (v, -e* pre (v));

end when ;
end when;

When the height becomes zero or negative, the integraion is halted and the velocity is reinitialized to a new
value according to Newton’s law. Note, that in this situation

pre(v) � v(t�h ) (2.4a)

v � v(t+h ) (2.4b)

whereth is the time instant whenh becomes zero or negative,v(t�h ) is the velocity before the collision takes
place andv(t+h ) is the velocity after the collision impulse occured.

The above model has the disadvantage that it will not always work. Assume for example that there is
a perfectly plastic collision, i.e.,e=0 . In this case the rebound velocity will be zero and after the event
restart the ball will just continue flying downward through the ground starting with a zero velocity. Ife >
0, and the simulation takes long enough, the rebound velocity will become very small. Sinceh is small
but negative at the event restart due to the state event detection algorithm, the rebound velocity maybe too
low in order to lift the ball over the ground (h � 0). Also in this case, the ball flies downwards through the
ground. Obviously, in both cases the model does not work as desired.

For this special case it is possible to reformulate the model in such a way that the mentioned difficulties
disappear by switching between two different modes of the system (= free flight or laying on ground):

model BouncingBall2
parameter Real e(min=0,max=1) = 0.5 "coefficient of restitution";
parameter Real g =9.81; "gravity constant";
parameter Real vSmall=0.00001; "minimal rebound velocity";

Real h "height";
Real v "velocity";

Boolean flying(start=h.start > 0) "mode of system";
equation

if pre (flying) then
der (h) = v;
der (v) = -g;

else
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der (h) = 0;
der (v) = 0;

end if

when h < 0 then
reinit (h, 0.0);
reinit (v, -e* pre (v));
flying = v > vSmall;

end when ;

In this model the height is reinitialized to zero after the collision. Therefore it is guaranteed that a new
event is triggered whenh becomes negative afterwards and it is never possible that the ball flies through
the ground. When the rebound velocity becomes very small, a lot of events will be generated. To prevent
this situation, it is assumed that the ball remains laying on the ground forever once the rebound velocity
becomes smaller as a certain margin.

2.6 Summary of hybrid operators

Built-in operators of Modelica have the same syntax as a function call. However, they do not behave as a
mathematical function, because the result depends not only on the input arguments but also on the status of
the simulation. In table 1 all the special operators used for hybrid modeling are collected. Some of them
have been already discussed in detail in the previous subsections.

Open issues

In some cases resources, such as memory or connections to physical ports, have to be allocated before a
simulation starts and have to be freed when the simulation terminates, both for a regular and an erroneous
stop. It is not yet clear how this is handeled in Modelica.

3 Relationship to other synchronous languages

In this section a more detailed discussion of the synchronous languages Lustre [Halb91] and Signal
[Gaut94] is carried out in order to point out the relationship with the Modelica hybrid model.

Lustre and Signal are both synchronous data flow languages and have the single assignment principle.
Contrary to Modelica, they are designed to model discrete systems only. As pointed out in the Lustre paper:
”... sequencing and synchronization constraints arise from data dependencies.“ Furthermore, it might be
interesting to note:

”This is a nice feature which allows natural derivation of parallel implementations.“

In Lustre, any variable denotes a flow, i.e. a pair of

� a possible infinite sequence of values

� a clock; representing a sequence of times

This is a conceptual model and any implementation would only store a small window of values and times.
The usual operators operates on variables and expressions sharing the same clock.

Lustre has some "temporal" operators like:

� pre (previous).pre(e) gives a sequence which is obtained by shifting the values of e one ”clock step“.

� �> (followed by) is used to give initial values. The program
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Operator Meaning of operator

initial () Returnstrue at the initial time instant.
terminal () Returnstrue at aregular halt of the simulation, but not in case of an error stop.

noEvent(expr)
Real elementary relations within expr are taken literally, i.e., no state or time
event is triggered.

sample(start,interval)

Returnstrue and triggers time events at time instants ”start +i� interval (i =
0;1; : : :). During continuous integration the operator returns alwaysfalse. The
starting time “start” and the sample interval “interval” need to be parameter
expressions and need to be a subtype of Real or Integer.

pre(y)

Returns the left limity(t pre) of variabley(t) at a time instantt. At an event
instant,y(t pre) is the value ofy after the last event iteration at time instantt.
Thepre operator can be applied if the following three conditions are fulfilled
simultaneously: (a) variabley is a subtype of Boolean, Integer or Real, (b) the
operator is applied in awhenbody ory is declared asdiscrete, (c) the operator
is not applied in a function class. At the initial timepre(y) = y.start ,
i.e., the left limit ofy is identical to the start value.

edge(b)
Returns ”band not pre(b)” for Boolean variable b. The same restrictions as
for the pre operator apply.

reinit (x,expr)

Reinitializes state variablex with “expr” at an event instant. Argumentx need
to be (a) a subtype of Real and (b) theder-operator need to be applied to it.
“expr” need to be an Integer or Real expression. Thereinit operator can only
be applied once for the same variablex.

abs(v)
Is expanded into “(if v >= 0 then v else�v)”. Argument v needs to be an
Integer or Real expression. Note, outside of awhen clause state events are
triggered.

sign(v)
Is expanded into “(if v> 0 then 1 else ifv< 0 then�1 else0)”. Argumentv
needs to be an Integer or Real expression. Note, outside of awhenclause state
events are triggered.

sqrt(v)
Returns “if noEvent(v>= 0) then squareRoot(v) elseOutsideDomainError”.
Argumentv needs to be an Integer or Real expression.

Table 1: Hybrid Operators.

n = 0 -> pre (n) + 1:

is thus a counter starting at 0.

� whensamples an expression according to a slower clock. ”ewhenb“ where b is a boolean expression
returns an expression with the same clock as b and the values at those times taken from e.

� current interpolates an expression on the clock immediately faster than its own. The interpolation is
a ”zero order hold“.

Signal has corresponding temporal operators:

� ”x $ 1“ means x delayed one step, i.e. corresponding topre(x).

� whenas in Lustre.

� ”x default y“ means a merging of the sequences x and y. If at one time no value of x is present, then
the y value is taken.
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Both languages have ”equations“ with just one variable at the left hand side, i.e. causality is given. However,
sorting of the equations is performed.

There are mechanisms in both languages to describe difference equations using a ”delay“ operator.
There are sample operators (when) and Lustre has an interpolation operator.

Possible generalization to mixed continuous and discrete signals

It seems most natural to have a definition for discrete signals for any time, not only for a sequence of clock
times, i.e. to consider them as piecewise constant signals. This corresponds also to the physical reality
of for example a variable in a computer. The value of it does exist also between the executions of the
algorithm since it is stored in memory. The interpolation operator is then automatically available since a
variable always has a value and can be accessed any time.

The sample operator ”xwhenb“ could naturally be extended to handle the case where x is a continuous
signal. The values of x are sampled at certain time instants and the result is kept constant inbetween. One
could define the sampling instants as ”when b changes“ but it seems more convenient to use the definition
”whenb becomestrue“. One could then, for example, write

u when Time >= SampleTime

to sample the continuous variable u at Time==SampleTime. (SampleTime could be a variable that always
contains the next time for sampling.)

Discrete systems

A linear discrete system can be described by difference equations as follows.

x(ti+1) = a�x(ti)+d �u(ti) (3.5)

y(ti) = c �x(ti)+d �u(ti) (3.6)

or by shifting x one sample interval:

x(ti) = a�x(ti�1)+d �u(ti) (3.7)

y(ti) = c �x(ti�1)+d �u(ti) (3.8)

In any case, we can distinguish three kinds of features:

� sampling - u might be continuous andu(ti) is the sampled signal.

� sample and hold - the output might go to a continuous subsystem. Since the valuey(ti) is only valid
at certain time instants, some kind of interpolation is needed. Zero-Order Hold is typical, i.e. that y
is piecewise constant.

� shift operator - Since the state variable is refered to at two different time instants, a shift operator is
typically introduced. Forward shift is typically denoted z and backward shiftq�1, see e.g., [Astr90].

Example

Using these features we could write a discrete system as:

Sample = Time >= pre (SampleTime);
SampleTime = (Time + DT) when Sample;

x = a* pre (x) + b*(u when Sample);
y = c* pre (x) + d*(u when Sample);
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Instead of using awhen-operator, we could use a function, for example calledsample, instead:

Sample = Time >= pre (SampleTime);
SampleTime = sample (Time + DT, Sample);

x = a* pre (x) + b* sample (u, Sample);
y = c* pre (x) + d* sample (u, Sample);

Note that a hold operator was not needed because the equations are always valid and are giving piecewise
constant signals for x and y.

It would be possible to introduce just one operatornew, instead of bothpre andsample:

Sample = Time >= SampleTime;
new(SampleTime, Sample) = Time + DT;

new(x, Sample) = a*x + b*u;
new(y, Sample) = c*x + d*u;

We notice that in all cases, we have to repeat the sampling condition in many places. It might then be
convenient to introduce some grouping mechanism where the sampling condition is only mentioned once,
for example:

when Time >= pre (SampleTime) then
SampleTime = Time + DT;
x = a* pre (x) + b*u;
y = c* pre (x) + d*u;

end when

or using the dualnew-operator instead of thepre-operator.

when Time >= SampleTime then
new(SampleTime) = Time + DT;
new(x) = a*x + b*u;
y = c*x + d*u;

end when

This is similar in spirit to the with statement for accessing components of a record in, for example, Pascal.
In such a case it is avoided using dot-notation everywhere.

One can view the equations in two ways:

� the equality sign is always valid and sampling of all signals is done when the condition becomes true.

� the equality sign is only valid when the condition becomes true (instantaneous equation). This corre-
sponds to the reality in a computer control algorithm which is only executed at certain time instances.

Basically, thepre and new operator are equivalent and it is always possible to automatically transform
a model written with thepre operator in an equivalent model using thenew operator. However, thepre
operator is more convenient to use:

� A discrete variablev is always an unknown variable, whereaspre(v) is always known. If thenew
operator technique is used, it is not known whetherv is a known or an unknown variable. Usually,v
is an unknown variable (= the right limit). However, ifnew(v) is used somewhere else in the model,
v is a known variable (= the left limit). Understanding an unknown model becomes therefore more
difficult.
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� It is possible to write: ”edgeb = b and not pre (b) “, i.e., edgeb is true when the Boolean
variableb becomes true. It is not possible to write something similar with thenewoperator technique,
because (a) one has to know whethernew(edgeb) is used somewhere else in the model and (b) it
can only be applied for Boolean variablesb where thenew operator is applied (edgeb = new(b)
and not b), butnot for all Boolean variables.

� When connecting two variables from different components, sayc1.b from componentc1 andc2.b
from componentc2 an equation is generated ”c1.b = c2.b “. Assume thatc1.b is defined by
an equation inc1 . In this case, both the right limitc1.b as well as the left limitpre(c1.b) can be
accessed in componentc2 via c2.b andpre(c2.b) . With thenew operator technique this is not
directly possible, becausenew(c2.b) characterizes the right limit of a variable whereasc2.b is
the left limit and in equations generated from theconnectstatement, it is not possible to use thenew
operator. As a result, it isnot possible to report both the left and the right limit of a variable from one
component to the next one via a simple connection.

4 Methods to handle variable structure systems

In this section the most important techniques to handle variable structure systems are sketched at hand of
the simple example of a rectifier circuit in figure 4. This system is difficult to treat because the diode shall
be modeled as anideal switch.

i 1  i 2

v 1 v 2

v 0

v = 0

R 1

R 2C

i d e a l  d i o d e

i 0  

Figure 4: Simple rectifier circuit.

4.1 Variable structure equations and finite automata

In some modeling systems, such as Dymola [Dymo98, Elmq93] and gPROMS [gPRO98, Bart92], variable
structure systems are specified withvariable structure equationswhich are controlled byfinite automatato
describe the switching behaviour. Basically, this is also the technique used in Modelica 1.0. In [Most96]
generalizations are given in case impulsive components are present. The characteristic of an ideal diode is
shown in figure 5. The switching structure of the diode is described by the state machine in the right part of
the figure: When the diode is in itsoff state, the current is zero. The diode switches into itson state, when
the voltage dropv becomes positive. In theon state the voltage drop is zero. The diode switches back to
the off state when the current becomes negative. In other words, the diode is described by the following
variable structure equation

0 = if off then i elsev (4.9)

which is controlled by a state machine via the Boolean variableoff. With the technique described in
[Most98], state machines can be modeled in Modelica by using Boolean equations to model the state
machine components. Essentially, this means that an ideal diode is described by the following Modelica
model:
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Figure 5: Ideal diode.

model IdealDiode
extends TwoPin;
Boolean off;

equation
// variable structure equation

0 = if pre (off) then i else v

// state machine (can be made nicer by hiding boolean
// equations in appropriatly defined model classes)

off = pre (off) and v<=0 or not pre (off) and i<0
end IdealDiode;

where the following auxiliary classes are used:

connector Pin
Voltage v;
flow Current i;

end Pin;

partial model TwoPin
Pin p, n;

protected
Current i; // current flowing from p to n pin
Voltage v; // voltage drop between p and n pin

equation
p.i = i;
n.i = -i;
v = p.v - n.v;

end TwoPin;

This diode model is used to describe the circuit of figure 4. The Modelica model is flattened and the equa-
tions are sorted. This results in the following state space model of the circuit. For notational convenience,
the variable names of figure 4 are used, instead of the Modelica names, e.g.i0 = Diode:i. Note, that the
voltagev0(t) of the voltage source is a known input function and that the voltage dropv2 of the capacitor is
the system state which is assumed to be known:

R1 � i0 = v0(t)�v1

vD = v1�v2

0 = if pre(off) then i0 elsevD

i2 := v2=R2

i1 := i0� i2
dv2
dt := i1=C

off := pre(off) and vD <= 0 or not pre(off) and i0 < 0

(4.10)



4 Methods to handle variable structure systems 20

The first three equations are coupled and must be solved simultaneously as a linear system of equations
with the unknownsi0;v1;vD. Sincepre(off) is always known, there are no difficulties to solve this algebraic
loop. Afterwards, the next assignments can be evaluated to compute the derivative of the state variable ˙v2.
Only at an event instant, the last (Boolean) assignment statement is executed.

An event occurs, if one of the relations (vD <= 0 or i0 < 0) changes its value. At an event instant, a new
value of ”off“ is computed based on the previous valuespre(off), vD andi0. This means that the complete
model equations have to be again evaluated with ”pre(off) = off“. The Modelica semantics defines that
this iteration continuous until none of thepre-operators changes any longer (see also section 2.3). In other
words, the following loop is implicitly present:

loop
-- equations
if off == pre (off) then exit loop
pre (off) := off

end loop

Afterwards the integration is restarted. If several ideal diodes are within an algebraic loop, several iterations
may be necessary until the correct switching status is found. This approach can be seen as a fixed point
iteration scheme to determine new consistent initial conditions.

This approach has the advantage, that quite general systems can be described and that the switching
structure is clearly displayed in the finite automaton, see e.g. figure 5. The essential disadvantage is that
the finite automaton is analgorithmwhich describes exactly in which way the iteration has to take place to
determine a new consistent state. This has several undesirable effects:

� The continuous components are described in adeclarativeway based on equations. Idealized phys-
ical components such as ideal switches or diodes are acausal by nature and should therefore com-
pletely described in a declarative way and not partly in a functional style.

� The fixpoint iteration scheme does not always converge. Since the algorithm is built into the model,
it is not possible to use other algorithms which may be more efficient and/or more reliable to find a
new consistent state.

� The fixpoint iteration scheme is always done over thecompletemodel equations, although only part
of the equations may be affected for finding the new consistent state, as it is also the case in the
example above. For bigger models the efficiency is therefore unnecessarily reduced.

� In some rare cases, where theconsistent statedepends on the model status before the event occured
(this is e.g. the case for an ideal thyristor, see section 5.2), the fixpoint iteration scheme may converge,
but to a non-physical solution, because the model status before the event occured, is no longer known,
after one iteration took place. In such a case it is not possible to describe the problem with local
automata for every component. Instead a global automaton is needed which depends on all coupled
ideal elements. However, such a solution is not practical.

4.2 Complementarity formulation

A completely different approach was developed by Lötstedt in a series of articles, e.g. [Loet82], and further
improved by several other reseachers, see especially the book by Pfeiffer and Glocker [Pfei96]. The central
idea is to transform the model equations into the followinglinear complementarity problem:

y= Ax+b; y� 0; x� 0; yTx= 0 (4.11)

(4.11) is a linear system of equations in the unknownsx andy. By the additional conditions it is required
that all unknowns are not negative and that for every pair(xi ;yi) at least one of the two elements is zero.
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Several algorithms exist to determine the solution of (4.11), most important the algorithm of Lehmke, see
[Murt88] for details. The ideal diode can be described in adeclarativeway by complementarity equations:

i � 0; (�v)� 0; i � (�v) = 0 (4.12)

These equations just state the ideal diode characteristic in the left part of figure 5. By replacing the diode
equations of (4.10) with (4.12) and by eliminating variablev1 from the linear system of equations, (4.10)
can be transformed into the following sorted model equations:

�vD = R1 � i0+v0�v2

i0 � 0; (�vD)� 0; i0 � (�vD) = 0

i2 := v2=R2

i1 := i0� i2
dv2
dt := i1=C

(4.13)

The first two lines define a linear complementarity problem with

y =�vd; x= i0; A = R1; b = v0�v2

The state derivative ˙v2 is computed by the remaining three assignment statements. During continuous
integration eithervD or i0 is zero and the other variable is computed from the first equation. An event
occurs, if one of the relations (i0 � 0 or (�vD) � 0) changes its value. At an event instant, the linear
complementarity problem is solved with one of the available algorithms, e.g. with the algorithm of Lehmke.

This approach has the advantage that the ideal elements are described in adeclarativeway. As a
consequence, several algorithms can be used to solve the consistent reinitizalization problem. Furthermore,
only the minimal set of equations are involved when solving the problem, and no longer the whole set of
model equations. The disadvantages of this approach are:

� It can be difficult to transform an ideal component into the required complementarity form. Espe-
cially, it is non-trivial to describe friction, see [Pfei96]. Furthermore, it is not known how to describe
(a) an ideal thyristor or (b) Coulomb friction where the maximum static friction force is bigger (and
not identical) to the sliding friction force at zero velocity.

� It seems to be difficult to transform a model given as a connected set of local componentsautomati-
cally into the standard complementarity form (4.11).

These disadvantages presently prevent the usage of this method in an object-oriented modeling language,
such as Modelica.

4.3 Parameterized curve descriptions

It is natural to ask why the ideal diode of figure 5 is difficult to describe mathematically. The answer
simply is that it is only difficult, as long as we restrict ourselves to use any= f (x) description of the diode
characteristic. However, curves can also be defined in a parameterized form as

y = f (s)

x = g(s)

using a curve parameters. This description form is more general and allows us also to describe an ideal
diode, see figure 6:
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Figure 6: Ideal diode described as parameterized curve.

v = if s< 0 then selse0
i = if s< 0 then 0 elses

(4.14)

(4.14) is a unique, mathematical description of the ideal diode (6) and does not contain any algorithm in it.
This technique was introduced in [Clau95] and a series of related papers. However, no proposal was

given how to actually implement parameterized curve descriptions in a numerically sound way. In Model-
ica, this is the standard way to realize ideal models. Below, anewtechnique is introduced how to simulate
such types of systems in a numerically clean way.

According to (4.14), a declarative model of an ideal diode can be defined in Modelica as:

model IdealDiode
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
v = if off then s else 0;
i = if off then 0 else s;

end IdealDiode;

This model is easier to understand as the previous two versions, in particular if it comes with a plot of the
ideal diode characteristic with the indicated s-parameterization.

Using the above diode model for the rectifier circuit of figure 4 leads to the following sorted set of
equations determined by BLT partitioning (remember thatv0(t) is a known input function andv2 is a state
which is assumed to be known):

off = s< 0
vD = v1�v2

vD = if off then selse0
i0 = if off then 0 elses

R1 � i0 = v0(t)�v1

i2 := v2=R2

i1 := i0� i2
dv2
dt := i1=C

(4.15)

The first 5 equations are coupled and build a system of equations in the 5 unknowns off;s;vD;v1; i0. The
remaining assignment statements are again used to compute the state derivative ˙v2. During continuous
integration the Boolean variables, i.e., off, are fixed and the Boolean equations are not evaluated. In this
situation, the first equation is not touched and the next 4 equations build a linear system of equations in
the 4 unknownss;vD;v1; i0 which can be solved by Gaussian elemination. An event occurs if one of the
relations (here:s< 0) changes its value. At an event instant, the first 5 equations are a mixed system of
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Boolean and continuous equations which has to be solved. It turns out that several meaningful algorithms
can be constructed to solve such systems of equations. This is the topic of section 6 on page 30. Similiarily
to the solution by a transformation into a linear complementarity problem, we end up with a local set of
equations which has to be solved at event instants. This new approach is advantageous because

� it is natural to describe physical components in a parameterized form,

� it is simple to transform an object-oriented modelautomaticallyinto a standard form of a mixed set
of continuous/discrete equations, where the unknows are of type Boolean, Integer, Real.

� several meaningful algorithms can be constructed to solve this mixed set of equations. These al-
gorithms are more efficient and at least as reliable as the fixed point iteration scheme of the first
approach (variable structure equations + finite automata).

Since finite automata can be expressed in form of Boolean equations [Most98], the first approach (variable
structure equations + finite automata) can be treated as a special case of the new method. Therefore, the
proposal just adds new functionality for simpler, more efficient and more reliable treatment of variable
structure systems without introducing restrictions. Clearly, it allows to describe more general systems as
with the complementarity formulation.

As a side effect, an algebraic system of equations may containonlyBoolean or other discrete equations,
e.g. discrete algebraic equations from different controllers which form an algebraic loop. Probably, this
feature is advantageous. This has to be analysed in more detail (not yet done).

5 Examples for parameterized curve descriptions

In this section several additional examples are given to describe variable structure systems with parameter-
ized curves leading to mixed systems of continuous/discrete equations.

5.1 Hysteresis

In figure 7 the characteristic of a simplehysteresisblock is shown where an inputu results in an output
y=+=�y0. In the range�1< u<+1 two possible values fory exist for a givenu value. The actual value
is chosen based on thebranchof theprevioussolution. A corresponding Modelica model has the following
structure:

y

u  u  y
1- 1

Figure 7: Simple hysteresis model.

block Hysteresis
parameter Real y0=1;
input Real u;
output Real y;
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protected
Boolean high (start = u.start > -1);

equation
high = u >= 1 or pre (high) and u > -1;
y = if high then y0 else -y0;

end Hysteresis;

If Boolean variablehigh is true, the upper branch of the hysteresis block is used. This is the case if either
u is bigger as one or if the upper branch was used since the last event instant andu is greater than�1.

This block is not described as a parametrized curve. It was discussed to introduce the technique of a
branch selection mode, which will be needed for the next elements.

5.2 Ideal thyristor

The characteristic of anideal thyristoris shown in figure 8. It is similar to an ideal diode with the difference
that the voltage dropv may also be positive and that the switch closes only ifv is positiveand the additional
Boolean input signalfire is true. With regards to an ideal diode model a complication arises, because
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Figure 8: Ideal thyristor model.

the origins= 0 belongs to three branches. If we have the requirement that every neighbouring points on
the curve also have values of the path parameters which are close together, it is not possible touniquely
parameterize the whole curve with justonecurve parameter. Instead, using just one curve parameter leads
to two branches of the curve which have identicals-values. By just providing a value of the curve parameter
s> 0, it is therefore not possible to uniquely define a point on the curve. An additional variable is needed
which characterizes the branch of the curve to resolve the ambiguity. Similarily to the hysteresis model of
the last chapter, there is the additional requirement that the thyristor should stay on the branch of the curve
where it was previously, if this is possible. These considerations lead to the following Modelica model of
an ideal thyristor:

model IdealThyristor
extends TwoPin;
input Boolean fire;

protected
Boolean off (start = true );

equation
off = s < 0 or pre (off) and not fire;

u = if off then s else 0;
i = if off then 0 else s;

end IdealThyristor;

Variableoff characterizes the active branch of the thyristor. Ifs is negative, the branch is uniquely identi-
fied. Otherwise, thepre branch together with the firing condition determines the actual active branch.

The thyristor model is a good candidate to give additional reasoning why thepre operator is more
convenient than thenewoperator. Rewriting the model with thenewoperator leads to:
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new(off) = s < 0 or off and not fire;
u = if new (off) then s else 0;
i = if new (off) then 0 else s;

The model looks a bit more complicated because thenew operator is used at several place. Worse, it is
not possible to derive this model by inheritance from an ideal diode or an ideal switch model, because the
equations of the basic equations to computeu andi are different. With thepre operator this is possible.

5.3 Coulomb Friction

The characteristic of a Coulomb friction element is shown in figure 9 under the assumption that the normal
force is constant. In such a case, the (tangential) friction force is uniquely determined as a function of the
relative velocityv, providedv is not zero. If the relative velocity vanishes, the friction element becomes
stuck, i.e., the friction force is now a constraint force which is determined by the equilibrium conditions.
As will become clear, describing such an element mathematically in a clean way is quite complicated. In

v

f
f m a x

f 0
v

f

b a c k w a r d  s l i d i n g

f o r w a r d  s l i d i n g

Figure 9: Coulomb friction element.

order to simplify our task, we will temporarily examine the model shown in figure 10, where the friction
characteristic in the sliding phase is just a straight line andfmax= f0. This model is quite similar to an
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Figure 10: Simplified Coulomb friction element.

ideal diode model and we expect that this element can be described by the following parameterized curve
equations:

if s > 1 then
v = s - 1;
f = f0 + f1*(s-1);
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else if s < -1 then
v = s + 1;
f = -f0 + f1*(s+1);

else
v = 0;
f = f0*s;

end if

This model is correct and completely describes the friction element of figure 10. However, currently we do
not know how to transform such a modelautomaticallyin a form which can be handeled by a numerical
integrator.

Let us analyse the difficulties by applying this model to the simple block on a rough surface shown in
figure 10 which is described by the following equation:

m*der (v) = u - f;

Note thatm is the mass of the block andu(t) is the given driving force. If the element is in its forward
sliding mode, i.e.,s� 1, this model is described by the following equations:

m*der (v) = u - f;
v = s - 1;
f = f0 + f1*(s-1);

or sorted into a forward sequence:

s := v + 1;
f := f0 + f1*(s-1);

der (v) := (u - f) / m;

Note, thatv is the state variable (which is assumed to be known in the model) andder(v) can be easily
computed. If the relations> 1 crosses zero an event occurs,v== 0 at the event instant, and the model is
described by the following equations:

m*der (v) = u - f;
v = 0;
f = f0*s;

Since we get an equation for the state variablev, the relative velocity can no longer be used as a state, i.e., we
have a higher index system. This requires to differentiate the second equation ones leading toder(v) = 0.
Inserting all relationships in the first equation finally results in the following sorted set of equations

s := u/f0;
v := 0;
f := f0*s;

The problem here is that we have a conditional index change of the model and this situation is difficult
to handle because equations need to be differentiated depending on the value of some Boolean variables.
However, at least with an interpretative system we could handle this problem.

Unfortunately, there is a more involved difficulty: Assume thats := u/f0 becomes bigger as one,
i.e., an event occurs sinces� 1 has a zero crossing. The model has to switch back to the sliding mode
equations. In this mode,v is a state ands := v+ 1 is computed fromv. If v would be positive, this is
fine. However, in generalv is computed by other equations in the stuck mode such that it is zero (here:
v= 0 is set; in general a system of equations has to be solved, especially if two or more friction elements
are dynamically coupled). Since this is a numerical computation, we can only expect thatv is small. In
particular,v may be small butnegative, e.g.,v=�10�15. As a results:= v+1 becomes a little bit less than
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one and the relations�1 crosses again zero, i.e., the element switches back in the stuck mode. However,
in the stuck mode the same situation as before is present which means that the element will again switch in
the forward sliding mode. In other words, no (numerical) solution exists to this set of equations.

Assume that the other situation occurs, i.e.,v is small andpositive. Then, it isneverpossible to switch
back at this time instant, because in the forward sliding modev is a (known) state ands is computed via
s= v+1. Switching back to the stuck mode would require thats becomes less than one which means that
v becomes negative. However,v cannot change at this time instant because it is a state. It is necessary
to be able to switch forth and back between the different modes at zero velocity in order that one of the
algorithms of the next section is able to determine new consistent initial conditions for the event restart.
Obviously, this is not possible.

The described difficulties exist for all hybrid models with a conditional index change, e.g., also for
an ideal diode which is connected in parallel to a capacitor. It is just particularily critical for the friction
element, because even the most simple mechanical model with Coulomb friction already has a conditional
change of the index.

As already mentioned, for the friction element we do not know how to resolve the discussed problems
in an automatic way. Therefore, we need to be pragmatic and describe the friction element atzero velocity
via the diagram of figure 11 where the relative acceleration is used for the abscissa axis and a new s-
parameterization is introduced. Therefore, atzero velocity, friction is described by the following model:
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Figure 11: Friction element at zero velocity.

a = der (v);
if s > 1 then

a = s - 1;
f = f0;

else if s < -1 then
a = s + 1;
f = -f0;

else
a = 0;
f = f0*s;

end if

Assume that the element switches tos> 1, i.e., into the forward sliding mode. In this situationv is small,
but may have any sign. Since the acceleration is positive (a= s�1), after a small time instant, the velocity
will become positive, too. If after some further simulation thevelocitybecomes negative, an event occurs,
and the above model describes again the behaviour of the element at zero velocity. These considerations
lead to the following Modelica model:

parameter Real f0, f1;
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Real a, v, f, s;
Boolean fullSliding(start= true );

equation
a = der (v);

if pre (fullSliding) and s > 1 then
v = s - 1;
f = f0 + f1*v;
fullSliding = true ;

else if pre (fullSliding) and s < -1 then
v = s + 1;
f = -f0 + f1*v;
fullSliding = true ;

else if s > 1 then // not pre (fullSliding)
a = s - 1;
f = f0;
fullSliding = v > 0;

else if s < -1 then
a = s + 1;
f = -f0;
fullSliding = v < 0;

else
a = 0;
f = f0*s;
fullSliding = false ;

end mif

Similarily to the thyristor model, we need to known the branch where the friction element was in the pre-
vious time instant, because we have a non-unique s-parameterization. Here, the branches are distinguished
by the Boolean variablefullSliding . If fullSliding is true , the diagram according to figure 10
applies. If the variable isfalse , the diagram according to figure 11 is used. In other words, the equations
for the two diagrams are just combined.

The friction model does not contain an explicit equationv= 0 in the locked mode. However, sincea= 0
andv(te) = 0 when the integration is started, the relative velocity will remain zero. This well-known trick
avoids a difficult problem: If an equationv= 0 is added, the number of degrees of freedom is reduced, i.e.,
the number of state variables is reduced and the set of equations needs to be resorted. If only a constraint
equation on acceleration level is added, the number of degrees of freedom does not change and only the
zero/non-zero structure of the linear system of equations changes in which the friction equations appear.
However, since these linear system of equations are solved numerically at run-time, this does not hurt. The
disadvantage of this approach is that it is not fully "clean". Due to a drift-off effect during integration, the
relative velocity will not remain zero if the integration time is very long. Practically, this is nearly never
a problem, because the simulation time for technical systems is seldomly so long that this drift-off effect
becomes visible.

The above model was derived under the assumption thatfmax= f0. In figure 12 the more general
case is shown, where this assumption does not hold. Previously, one Boolean variablefullSliding
was sufficient to resolve the non-uniqueness of the s-parameterization. This is no longer possible, because
at zero velocity in the range 1� jsj � fmax= f0 = peak there are two additional possible solutions. The
following physical rule is used to resolve this non-uniqueness: Assume that the friction element was in the
backward sliding mode and that the velocity becomes positive. In this case one has to select the locked



5 Examples for parameterized curve descriptions 29

a  =  v

f

f 0

b a c k w a r d  s l i d i n g

f o r w a r d  s l i d i n g

s

s

s  =  - 1

- f 0

s  =  1

.

v  =  0

- f m a x

f m a x
s  =  p e a k

s  =  - p e a k

Figure 12: Friction element at zero velocity withfmax 6= f0.

mode, if this is possible and not the forward sliding mode, because the friction force has to exceedfmax

before it can switch to the forward sliding mode. In other words, if the friction element is stuck or in the
backward sliding mode,s> peakis required, in order to switch to the forward sliding mode. However, if the
element is already in the forward sliding mode,s> 1 sufficies to remain in this mode. These considerations
finally lead to the following Modelica model of a friction element defined in adeclarativestyle:

model Friction
parameter Force f0 "friction force at zero velocity";
parameter Force f1 "f = f0 + f1*v":
parameter Real peak=1 (min=1) "fMax = peak*f0;
Flange p, n "flanges of element";

protected
Position r "relative position";
Velocity v "relative velocity";
Acceleration a "relative acceleration";
Force f "friction force";
constant Integer Forward = 2, StartForward = 1, Stuck = 0,

Backward = -2, StartBackward = -1;
Integer mode;

equation
// relative quantities

r = n.r - p.r;
v = der (r);
a = der (v);

// friction law
if pre (mode) == Forward and s > 1 then

v = s - 1;
f = f0 + f1*(s-1);
mode = Forward;

else if pre (mode) == Backward and s < -1 then
v = s + 1;
f = -f0 + f1*(s+1);
mode = Backward;

else if pre (mode) <= Stuck and s > peak or
pre (mode) > Stuck and s > 1 then

a = s - 1
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f = f0
mode = if v > 0 then Forward else StartForward;

else if pre (mode) >= Stuck and s < -peak or
pre (mode) < Stuck and s < -1 then

a = s + 1
f = -f0
mode = if v < 0 then Backward else StartBackward;

else
a = 0
f = f0*s
mode = Stuck;

end if
end Friction;

where the following auxiliary class is used:

connector Flange
Position r;
flow Force f;

end Pin;

Note, thatInteger variablemode is used to characterize the different non-unique situtations. Non-zero
velocity is represented bymode = Forward andmode = Backward . Heres is proportional to the
velocity v. Zero velocity is characterized bymode = StartForward , Stuck andStartBackward .
If mode = StartForward or StartBackward , s is proportional to the acceleration. Ifmode =
Stuck , s is proportional to the unknown constraint force.

For simplicity, in the above model, just a linear functional relationship of the friction force from the
relative velocity is assumed in the sliding phase. In the Modelica library, one should either use a table or a
replaceable class to define any type of characteristic.

6 Solution methods for mixed systems of equations

As introduced previously, variable structure elements can be described as parameterized curves which lead
to mixed sets of continuous/discrete equations, with unknowns of type Real, Boolean and Integer. By BLT-
partitioning these equations are sorted into an explicit forward sequence and the algebraic loops of minimal
dimensions (with respect to permutation of equations and variables) are determined. For simplicity, we will
assumetemporarilythat all continuous equations in algebraic loops are linear in the continuous variables.
If a relation is directly used in an if-expression, it is replaced by a Boolean auxiliary variable together with
an explicit assignment of the relation to this variable. As a result, the algebraic loops have the following
structure

y := f (relation(x;y);y)
A(y)x = b(y)

(6.16)

where

1. y areunknowndiscrete variables of typeBoolean , Integer or/anddiscrete Real .

2. x areunknownReal variables.

3. Matrix A is square and regular for all values ofy. Otherwise, an error occurs because in this case no
unique solution exists (either no or an infinite number of solutions).
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4. f is a function of relations ofx, y, e.g.x2 > y1, and of the unknownsy. Example:

y1 := x1 > x2

y2 := y1 and x3 < 0

Temporarilywe assume that the discrete equations are solvable in an explicit forward sequence, e.g.,
the following equations are not allowed:

y1 := x1 > x2 or y2

y2 := y1 and x3 < 0

5. ThenoEvent () operator is not applied to any of the relations, in order that no discontinuous change
occurs during integration, i.e., thaty is constant during integration, see also discussion below.

From the construction it is clear that (6.16) can be generatedautomaticallyfrom a flat Modelica model.
During continuous integration,y is fixed and does not change its value. The continuous unknown variables
x are computed from the linear system of equations (Ax = b). An event occurs, if one of the relations
changes its value, i.e., the relations used in functionf are used as crossing functions. At an event instant,
the complete system of equations (6.16) is utilized to determine the unknown variablesx andy. In the
following, several algorithms are discussed to compute such a solution.

6.1 Fixed point iteration

The most simple algorithm is a fix point iteration scheme. This scheme is identical to the one used in the
”variable structure equation + finite state machine“ approach. The essential difference is that the iteration
is done locally and not over the complete model equations. As a consequence, it is more efficient, if the
algebraic loop does not contain all model equations, which is usually the case:

x := x (when event occured)
y := y (from last event)
loop

last ( y ) := y
y := f(relation( x , y ), y )

if y == last ( y ) then exit ;
A := A( y )
b := b( y )
<solve Ax = b for x>

end loop;

The main advantage of this fix point iteration scheme is its simplicity. The experience with the fix point
iteration scheme used in Dymola shows that in most practical cases the convergence is fast (within 3 or 4
iterations). However, there is of course no guarantee that the iteration converges.

6.2 Exhaustive search

Since all relations (relation (x ,y )) can take on only a countable set of values, one can try all possible
combinations of values, i.e., perform an exhaustive search. This leads to the following algorithm:

while <not all values for relation( x ) tried>
lastRelation( x , y ) := <next possible value set>
y := f (lastRelation( x , y ), y )
A := A( y )
b := b( y )
<solve Ax = b for x>
if relation( x , y ) == lastRelation( x , y ) then exit ;

end loop;
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The main advantage of this algorithm is that it is theonly algorithm which determines the solution savely
after a finite number of steps, if a solution exists, or exits with an error message that no solution exists for
the systems of equations. The disadvantage is that the number of possible values forrelation (x ,y ) can
be huge. E.g. if 10 relations are present, there exist 210 = 1024 combinations, i.e., in the worst case 1024
iterations (and solutions of the linear system of equations) are needed. In practical cases, this situation is
not so worse as it looks like. E.g. often electric power systems have at most 6 coupled electrical switches
(diodes or thyristors) which leads to at most 26 = 64 iterations. In some cases, the number of combinations
can be reduced, because it is clear that not all combinations can occur, e.g., for the relationss> 1 ands< 1
of a friction element it is not possible that both relations becometrue simultaneously, i.e., there are only
3 instead of 4 possible values.

Note, that the exhaustive search is also the only known algorithm to determine safely the solution of
the linear complementarity problem (4.11). Only in special circumstances, e.g. ifA is symmetric and
positive definite, the convergence of the Lehmke and other algorithms to the solution can be guaranteed,
see [Murt88].

6.3 Improved fix-point iteration

The fix point iteration scheme can probably be improved by restricting the step-size in such a way that the
next solution vector just jumps to the ”nearest“ next interval. For example assume that three relations on a
variablex are used, such as ”y = if x < -1 then -1 else if x > +1 then +1 else 0”, the current value of x is 2,
and after the iteration the value of x is� 1. In such a case, the next iteration starts with a value of x=+1,
because this x is at the border of the ”next“ interval. A corresponding algorithm has the following structure:

x := x (when event occured)
y := y (from last event)
loop

last ( y ) := y
y := f(relation( x , y ), y )

if y == last ( y ) then exit ;
A := A( y )
b := b( y )
<solve Az = b for z>
<determine the biggest stepsize h, with 0 < h <= 1 such that

x + h*( z - x ) does not change relation( x , y )>
x := x + (h+eps)*( z - x )

end loop;

This algorithm has to be analysed more carefully. There is the guess that this algorithm is more robust as
the simple fixed point iteration scheme, i.e., that it converges to a solution even if the fixed point iteration
scheme does not converge.

6.4 Generalizations

Three algorithms have been presented to solve a mixed set of continuous and discrete equations. It is also
possible to combine these algorithms, e.g. to start with a fix point iteration scheme and if this scheme does
not converge, say, within 10 steps, the algorithm can be switched to an exhaustive search.

Previously, we assumed that the algebraic loop is linear in the real variables. All algorithms can still be
applied, even if this assumption does not hold. The only change is that a nonlinear system of equations has
to be solved in every iteration step, instead of a linear one.

Temporarily, we assumed that the discrete variables can be sorted into an explicit forward sequence.
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This requirement can be relaxed. E.g., if the following equations are present

y1 := x1 > x2 or y2

y2 := y1 and x3 < 0

one can use the relations (x1 > x2, x3 < 0) and y2 as iteration variables in the fix point iteration scheme. In
other words,yi values have to be selected as additional iteration variables, in order to get an explicit forward
evaluation sequence. Since theyi variables of type Integer (without minimum and maximum values) as well
as discrete Real variables do not have a countable set of values, the exhaustive search algorithm is no longer
possible for these kind of systems.

Note, that the implementation of the fix point iteration scheme is not more difficult as previously. The
main difference is just that there are local fixed point iterations instead of one global iteration.

7 Event detection

In this section some difficulties are discussed which are related to the detection of event instants.
Integrators provide a basic functionality to detect and stop the integration at the zero crossing of a cross-

ing function (so called ”root finding“ property). Usually, such integrators have the following properties:

1. A crossing functionz= z(x(t); t) = z(t) has to be defined which is at least continuous during integra-
tion.

2. At the startt0 of the integration it is required thatz(t0) 6= 0, in order that a zero crossing can be
detected.

3. When a zero crossing of a crossing function occurs, the time instanttz of the zero crossing point is
determined upto a specified precision and the integration is halted at the event instantte (jtz�tej � εt).

4. At the event instantte it is guaranteed that the crossing function is identical to zero or has an opposite
sign as during integration, i.e.,z(t0) �z(te)� 0.

All these requirements make sense from the integrator point of view in order to provide a mathematically
”clean“ implementation. However, they complicate the code generation of a Modelica model, e.g., because
it must be guaranteed that all crossing functions are not zero at an event restart. In the following it is
discussed how relation triggered state events can be mapped to the discussed model of an integrator.

The exact meaning of a Modelica relation ”v1 rel_opv2“ with v1;v2 Real variables and rel_op = ”>; �
; <; �“ is given in table 2.

Modelica relation v1 rel_opv2

at an event instant v1 rel_opv2

during integration v1 rel_opv2 from last event

Table 2: Meaning of a Modelica relation.

This means that at anevent instanta relation is taken literally and that duringcontinuous integrationthe
value of the relation computed at the last event instant, i.e., afixed value, is used.

Additionally, every Modelica relation implicitly defines acrossing function. This is a bit tricky, due to
the proporties of an integrator with root finding option discussed above. First of all, a relation is transformed
into one of the standard forms

z> 0; z� 0; z< 0; z� 0 (7.17)

E.g.x1 > x2 is transformed intoz= x1�x2; z>0. Basically,z is used as crossing function for the integrator.
There are two difficulties:
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1. A crossing function needs to be non-zero at an event restart, althoughzmay be identical to zero.

2. After a zero crossing took place, the corresponding relation should change its value, althoughz may
be identical to zero at the event instant. If for examplez was positiv, a zero crossing of the relation
z� 0 took place, andz= 0 at the event instant, the relation doesnot change due to the zero crossing.

Both cases can be handeled by shifting the actual crossing function a little bit depending on the situation.
In figure 13 a meaningful strategy is displayed. Ifz is negative at the event restart, the crossing of the+ε
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Figure 13: Crossing functions for Modelica relations.

line triggers an event. This ensures that both the crossing function is not zero at the event restart and that
a certain margin is introduced in order thatz= 0 cannot appear at the zero crossing point. Contrary, ifz is
positive at the event restart, the crossing of the�ε line triggers an event. Ifz is identical to zero at the event
restart, the actual relation is needed in order that the zero crossing line is placed in the domain where the
relation has its opposite value. This discussion is summarized in the following table:

relation at restart crossing function event, when
true z(t)+ ε z(t) ��ε

z> 0; z� 0
false z(t)� ε z(t) �+ε
true z(t)� ε z(t) �+ε

z< 0; z� 0
false z(t)+ ε z(t) ��ε

Table 3: Crossing functions associated with Modelica relations.

In relations involving Real variables the ”==“ relational operator is not allowed because this would
require a more complicated strategy introducing two crossing functions for one relation. Furthermore, the
central feature that a relation is taken literally at event instants has to be given up. Instead aε range around
zero has to be introduced in which the == relation istrue.

For the numerical integrators of the Godess project, Olsson ([Olss98], page 44) introduced a more
useful definition of state events, by requiring a domain of validityzi(x; t) � 0. An event occurs, if this
domain is left, i.e., if one of thezi becomes negative. This approach is advantageous, because the integrator
can check the valid domain before the start of the simulation. Furthermore,zi = 0 is allowed for the start of
the integration and at event restarts. It is straightforward to modify the above approach for the handling of
Modelica relations, in order that it can also be used together with the Godess approach.

Open issue

The ε has to be selected in such a way thatjzj+ ε is not identical to zero whenz vanishes at an event
instant, i.e.,ε must be a little bit bigger as the smallest positive number representable on the machine, e.g.,
ε = 10�60.
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For variable structure systems there is another reason to introduce a small hysteresis via anε, because
algebraic loops are solved in an iterative process to determine new consistent initial conditions and the
solutions of different model structures are close together (e.g. for the friction element, different structures
are present whethers is a little bit less than 1 or a little bit bigger than 1). A hysteresis at the event instant
can reduce the danger that numerical errors will result in a wrong model structure.

In such a case, theε should be in the order wherejzj can be effectively regarded as zero. E.g. if a typical
zvalue is in the order of one, one could selectε = 10�12. In general the modeling system cannot figure out
a meaningful value forε. Therefore, the user should have the possibility to influence it directly. It is an
open issue how an appropriateε can be defined. E.g. Real numbers could get an additional attributescalein
order that the scaled number is in the order of 1. This scale factor may be provided by the user and can be
used to select an appropriateε, e.g., ”ε := scale�1000� εmachine“. Note, that no decision has yet been made
for Modelica in this respect.
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