

Feature extraction and selection

Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa

And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. *JMLR*, 3 (2003) 1157-1182

Introduction/Motivation

WHY?

Basic definitions, Terminology

WHAT?

Variable Ranking methods

HOW?

Feature subset selection

Problem: Where to focus attention?

A universal problem of intelligent (learning) agents is where to focus their attention.

What aspects of the problem at hand are important/necessary to solve it?

Discriminate between the relevant and irrelevant parts of experience.

What is **feature selection?**

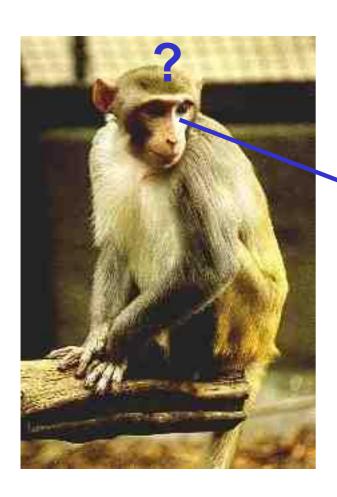
Feature selection:

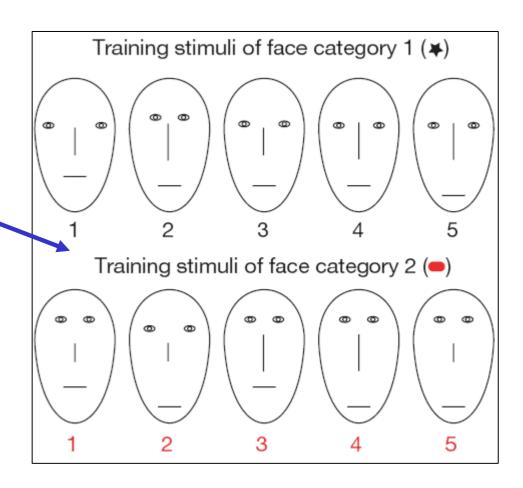
Problem of selecting some subset of a learning algorithm's input variables upon which it should focus attention, while ignoring the rest (DIMENSIONALITY REDUCTION)

*Humans/animals do that constantly!

Motivational example from Biol

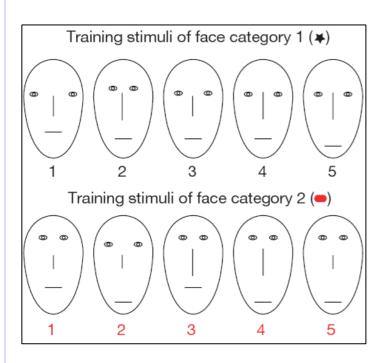
Monkeys performing classification task

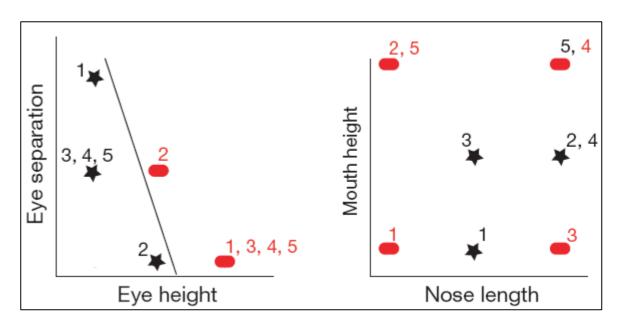




Motivational example from Biol

Monkeys performing classification task





All considered features:

- Eye height
- Eye separation
- Nose length
- Mouth height

How many pairs of features?

Diagnostic features:

- Eye height
- Eye separation

Non-Diagnostic features:

- Nose length
- Mouth height

Monkeys performing classification task

Results:

- activity of a population of 150 neurons in the anterior inferior temporal cortex was measured
- 44 neurons responded significantly differently to at least one feature
- ◆ After Training: 72% (32/44) were selective to one or both of the diagnostic features (and not for the non-diagnostic features)

Feature Selection in ML?

Why even think about Feature Selection in ML?

- The information about the target class is inherent in the variables!
- Naive theoretical view:
 More features
 - => More information
 - => More discrimination power.

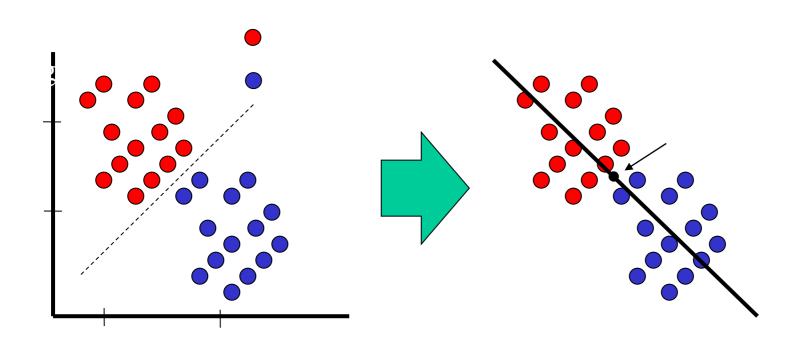
- In practice:
 many reasons why this is not the case!
- Also:
 Optimization is (usually) good, so why not try to optimize the input-coding?

Introduction

- Large and high-dimensional data
 - Web documents, etc...
 - A large amount of resources are needed in
 - Information Retrieval
 - Classification tasks
 - Data Preservation etc...

Dimension Reduction

Dimension Reduction

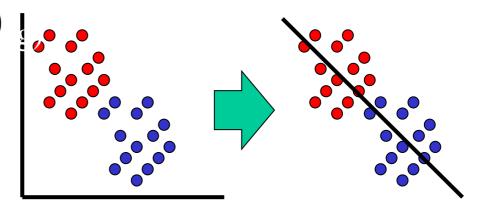


Dimension Reduction

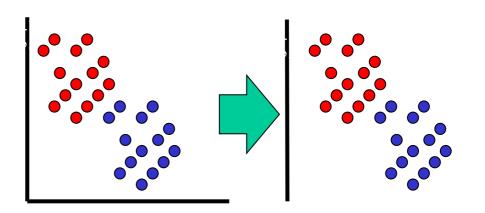
- preserves information on classification of overweight and underweight as much as possible
- makes classification easier
- ◆ reduces data size (2 features → 1 feature)

Dimension Reduction

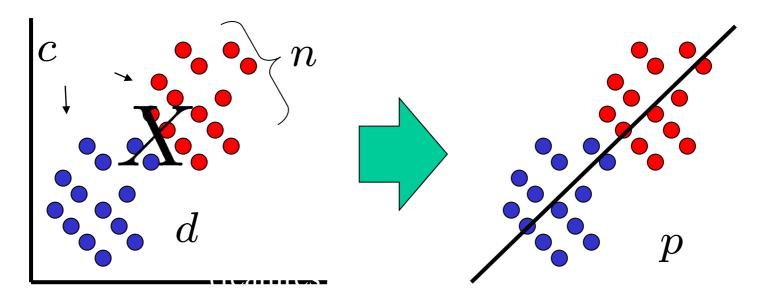
- Feature Extraction (FE)
 - Generates feature
 - ex.
 - Preserves weight / height



- Feature Selection (FS)
 - Selects feature
 - ex.
 - Preserves weight



Problem Setting



- \diamond Each of data X (n samples) is represented by d features
- \diamond Data belong to c different classes in supervised learning
- *Dimension reduction is to generate or select p features preserving original information as much as possible in some criterion 1

Feature Extraction

- Extracts features by projecting data to a lowerdimensional space
 - Unsupervised Method
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)
 - Supervised Method
 - Linear Discriminant Analysis (LDA)
 - Maximum Margin Criterion (MMC)
 - Orthogonal Centroid algorithm (OC)
- Finds an optimal projection matrix W

Principal Component Analysis

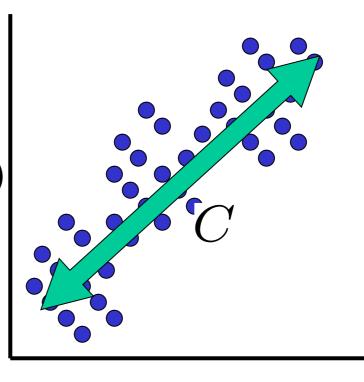
- Unsupervised Method
- PCA tries to maximize

$$J(W) = trace(W^T C W)$$

❖PCA needs Singular Value Decomposition calculation (SVD).

time complexity : $O(n^2d)$

space complexity : O(nd)



C: covariance matrix

Linear Discriminant Analysis

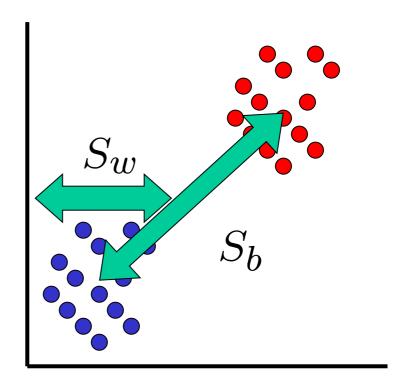
Supervised method

Time complexity

$$O((n+c)^2d)$$

Space complexity

O(nd)



 S_b Interclass scatter matrix

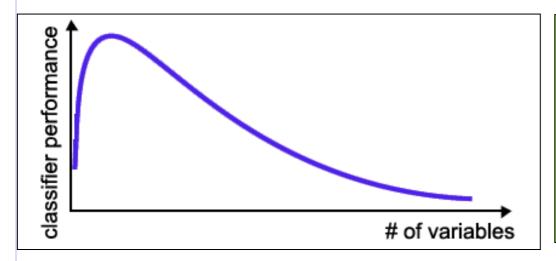
 S_w : Intraclass scatter matrix

Feature Selection in ML? YES!

- Many explored domains have hundreds to tens of thousands of variables/features with many irrelevant and redundant ones!
- In domains with many features the underlying probability distribution can be very complex and very hard to estimate (e.g. dependencies between variables)!
- Irrelevant and redundant features can "confuse" learners!
- Limited training data!
- Limited computational resources!
- Curse of dimensionality!

Curse of dimensionality

- ❖The required number *m* of samples (to achieve the same accuracy) grows exponentionally with the number of variables! PAC: *m* > |Hypothesis_space|
- In practice: number of training examples is fixed!
 - => the classifier's performance usually will degrade for a large number of features!



In many cases

• the information that is lost by discarding variables

is made up for by

• a more accurate mapping/sampling in the lower-dimensional space!

Věta o PAC učení rozhodovacího stromu

Nechť objekty jsou charakterizovány pomocí nobinárních atributů a nechť připouštíme jen hypotézy ve tvaru rozhodovacího stromu s maximální délkou větve k. Dále nechť δ, ε jsou malá pevně zvolená kladná čísla blízká 0. Pokud algoritmus strojového učení vygeneruje hypotézu φ, která je konzistentní se všemi m příklady trénovací množiny a platí

$$m \ge m_{k-DT}(n) \ge c (n^k + \ln(1/\delta)) / \epsilon$$

pak φ je ϵ -skoro správná hypotéza s pravděpodobností větší než (1- δ), t.j. chyba hypotézy φ na celém definičním oboru konceptu je menší než ϵ s pravděpodobností větší než (1- δ).

Example for ML-Problem

Gene selection from microarray data

- Variables: gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g. tissue biopsy)
- Task: Seperate healthy patients from cancer patients
- Usually there are only about 100 examples (patients) available for training and testing (!!!)
- ◆ Number of variables in the raw data: 6.000 60.000
- Does this work ? ([8])

Example for ML-Problem

Text-Categorization

- Documents are represented by a vector containing word frequency counts (its size ~ number of features is comparable to that of the vocabulary)
- Vocabulary ~ 15.000 words (i.e. each document is represented by a 15.000-dimensional vector)
- Typical tasks:
 - Automatic sorting of documents into web-directories
 - Detection of spam-email

Motivation

*Especially when dealing with a large number of variables there is a need for **dimensionality** reduction!

Feature Selection can significantly improve a learning algorithm's performance!

Overview

Introduction/Motivation

Basic definitions, Terminology

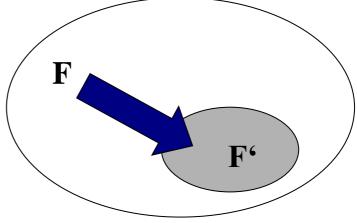
Variable Ranking methods

Feature subset selection

Feature Selection - Definition

 \bullet Given a set of features $F=\{f_1,...,f_i,...,f_n\}$

the Feature Selection problem is to find a subset $F' \subseteq F$ that "maximizes the learners ability to classify patterns".



$$\{f_1,...,f_i,...,f_n\} \xrightarrow{f.selection} \{f_{i_1},...,f_{i_j},...,f_{i_m}\}$$

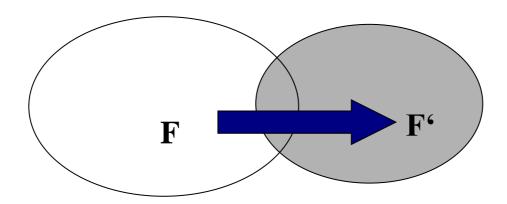
$$i_{j} \in \{1,...,n\}; j = 1,...,m$$

 $i_{a} = i_{b} \Rightarrow a = b; a,b \in \{1,...,m\}$

Feature Extraction-Definition

 \bullet Given a set of features $F = \{f_1, ..., f_i, ..., f_n\}$

the Feature Extraction("Construction") problem is is to map F to some feature set F" that maximizes the learner's ability to classify patterns (design new derived attributes).



$$\{f_1,...,f_i,...,f_n\} \xrightarrow{f.extraction} \{g_1(f_1,...,f_n),...,g_j(f_1,...,f_n),...,g_m(f_1,...,f_n)\}$$

Feature Selection — Optimality?

In theory the goal is to find an optimal feature-subset (one that maximizes the scoring function)

- In real world applications this is usually not possible
 - For most problems it is computationally intractable to search the whole space of possible feature subsets
 - One usually has to settle for approximations of the optimal subset
 - Most of the research in this area is devoted to finding efficient search-heuristics

Optimal feature subset

- Often: Definition of optimal feature subset in terms of classifier's performance
- The best one can hope for theoretically is the Bayes error rate
- Given a learner I and training data L with features $F = \{f_1, ..., f_i, ..., f_n\}$ an optimal feature subset F_{opt} is a subset of F such that the accuracy of the learner's hypothesis h is maximal (i.e. its performance is equal to an optimal Bayes classifier)*.
 - F_{opt} (under this definition) depends on I
 - F_{opt} need not be unique
 - \diamond Finding F_{opt} is usually computationally intractable

Relevance of features

- Relevance of a variable/feature:
 - There are several definitions of relevance in literature:
 - Relevance of 1 variable,
 - Relevance of a variable given other variables,
 - Relevance given a certain learning algorithm,...
 - Most definitions are problematic, because there are problems where all features would be declared to be irrelevant
 - The authors of [2] define two degrees of relevance: weak and strong relevance.
 - A feature is relevant iff it is weakly or strongly relevant and "irrelevant" (redundant) otherwise.

+

Relevance of featurs

Strong Relevance of a variable/feature:

Let $S_i = \{f_1, ..., f_{i-1}, f_{i+1}, ...f_n\}$ be the set of all features except f_i . Denote by s_i a value-assignment to all features in S_i .

A feature f_i is strongly relevant, iff removal of f_i alone will always result in a performance deterioration of an optimal Bayes classifier.

Weak Relevance of a variable/feature:

A feature f_i is weakly relevant, iff it is not strongly relevant, and there exists a subset of features S_i of S_i for which there exists a subset of features S_i , such that the performance of an optimal Bayes classifier on S_i is worse than on $S_i \cup \{f_i\}$

Relevance of features

- - Classifiers induced from training data are likely to be suboptimal (no access to the real distribution of the data)
 - Relevance does not imply that the feature is in the optimal feature subset
 - Even "irrelevant" features can improve a classifier's performance
 - Defining relevance in terms of a given classifier (and therefore a hypothesis space) would be better.

Overview

Introduction/Motivation

Basic definitions, Terminology

Variable Ranking methods

Feature subset selection

Variable Ranking

❖Given a set of features F

Variable Ranking is the process of ordering the features by the value of some scoring function $S: F \to \Omega$ (which usually measures feature-relevance)

Resulting set: a permutation of $F: F = \{f_{i_1}, ..., f_{i_j}, ..., f_{i_n}\}$ with

$$S(f_{i_j}) \ge S(f_{i_{j+1}}); \quad j = 1, ..., n-1;$$

The score $S(f_i)$ is computed from the training data, measuring some criteria of feature f_i .

By convention a high score is indicative for a valuable (relevant) feature.

Variable Ranking — Feature Selection

- A simple method for feature selection using variable ranking is to select the k highest ranked features according to S.
- This is usually not optimal
- but often preferable to other, more complicated methods

computationally efficient(!): only calculation and sorting of n scores

Ranking Criteria — Correlation

Correlation Criteria:

Pearson correlation coefficient

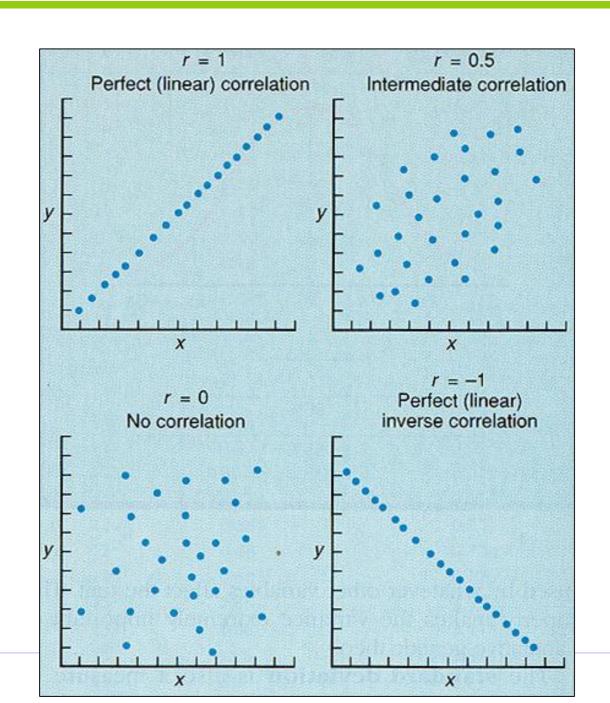
$$R(f_i, y) = \frac{\text{cov}(f_i, y)}{\sqrt{\text{var}(f_i) \text{var}(y)}}$$

Estimate for m samples:

$$R(f_{i}, y) = \frac{\sum_{k=1}^{m} (f_{k,i} - \overline{f_{i}})(y_{k} - \overline{y})}{\sqrt{\sum_{k=1}^{m} (f_{k,i} - \overline{f_{i}})^{2} \sum_{k=1}^{m} (y_{k} - \overline{y})^{2}}}$$

The higher the correlation between the feature and the target, the higher the score!

Ranking Criteria – Correlation



Ranking Criteria – Correlation

Correlation Criteria:

- * RX,Y)=[-1,1]
- \Rightarrow mostly $R(x_i,y)^2$ or $R(x_i,y)$ is used
- \bullet measure for the goodness of **linear** fit of x_i and y.

(can only detect linear dependencies between variable and target.)

- \Rightarrow what if y = XOR(x1,x2) ?
- often used for microarray data analysis

Ranking Criteria – Correlation

Questions:

Can variables with **small score** be automatically discarded?

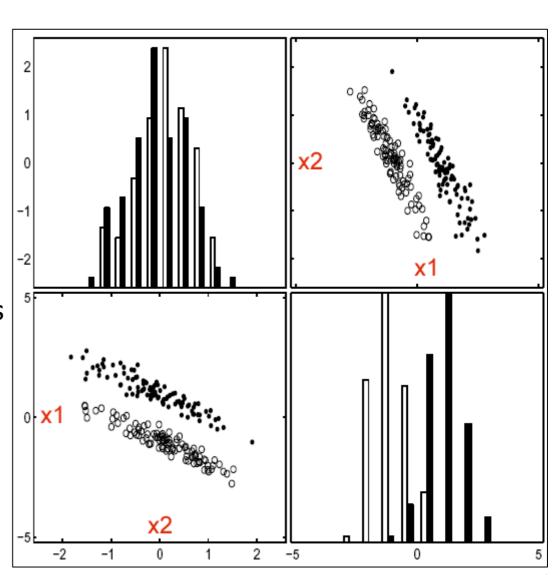
Can a useless variable (i.e. one with a small score) be useful together with others?

Can two variables that are useless by themselves can be useful together?)

Ranking Criteria – Correlation

- Can variables with small score be discarded without further consideration?
- Even variables with small score can improve class seperability!
- Here this depends on the correlation between x_1 and x_2 .

(Here the class conditional distributions have a high covariance in the direction orthogonal to the line between the two class centers)

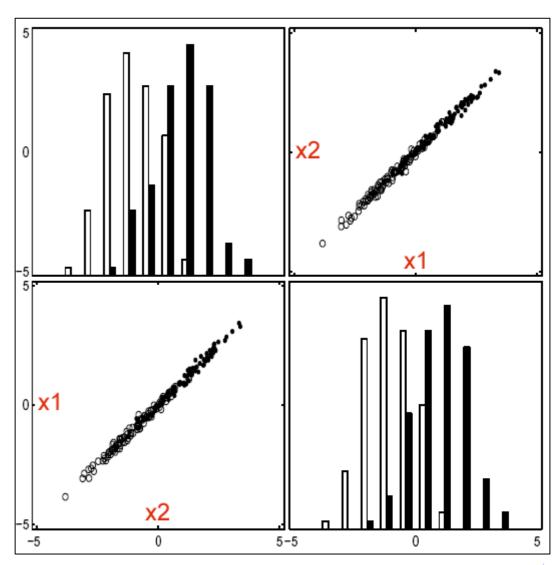


Ranking Criteria – Correlation

•Example with high correlation between x_1 and x_2 .

(Here the class conditional distributions have a high covariance in the direction of the two class centers)

 No gain in seperation ability by using two variables instead of just one!

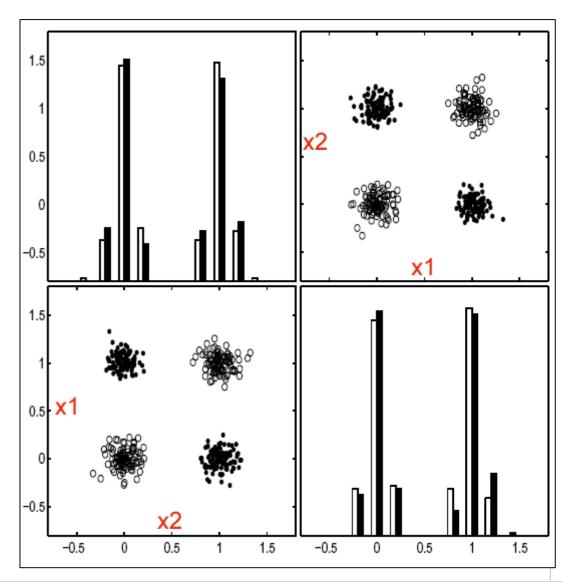


+

Ranking Criteria – Correlation

•Can a useless variable be useful together with others?

YES!



Ranking Criteria — Correlation

•correlation between variables and target are not enough to assess relevance!

 correlation / covariance between pairs of variables has to be considered too!

(potentially difficult)

diversity of features

Ranking Criteria – Inf. Theory

Information Theoretic Criteria

Most approaches use (empirical estimates of) mutual information between features and the target:

$$I(x_i, y) = \int_{x_i} \int_{y} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i) p(y)} dxdy$$

Case of discrete variables:

$$I(x_i, y) = \sum_{x_i} \sum_{y} P(X = x_i, Y = y) \log \frac{P(X = x_i, Y = y)}{P(X = x_i)P(Y = y)}$$

(probabilities are estimated from frequency counts)

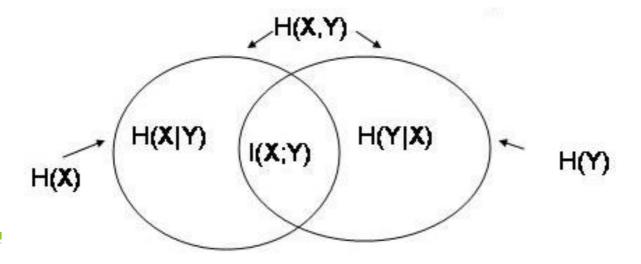
1

Ranking Criteria – Inf. Theory

Mutual information can also detect non-linear dependencies among variables!

But harder to estimate than correlation!

It is a measure for "how much information (in terms of entropy) two random variables share"



Variable Ranking - SVC

Single Variable Classifiers

- Idea: Select variables according to their individual predictive power
- criterion: Performance of a classifier built with 1 variable
- e.g. the value of the variable itself(set treshold on the value of the variable)
- predictive power is usually measured in terms of error rate (or criteria using fpr, fnr)
- *also: combination of SVCs using ensemble methods (boosting,...)

Overview

Introduction/Motivation

Basic definitions, Terminology

Variable Ranking methods

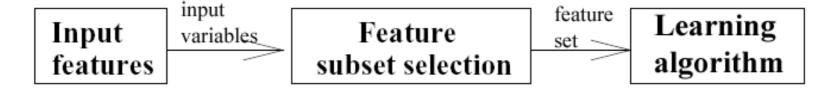
Feature subset selection

- **Goal:**
- Find the optimal feature subset. (or at least a "good one.")

- Classification of methods:
 - Filters
 - Wrappers
 - Embedded Methods

- You need:
 - a measure for assessing the goodness of a feature subset (scoring function)
 - a strategy to search the space of possible feature subsets
- Finding a minimal optimal feature set for an arbitrary target concept is NP-hard
- => Good heuristics are needed!

- Filter Methods
- Select subsets of variables as a pre-processing step, independently of the used classifier!!



Note that Variable Ranking-FS is a filter method

- Filter Methods
- usually fast

 provide generic selection of features, not tuned by given learner (universal)

this is also often criticised (feature set not optimized for used classifier)

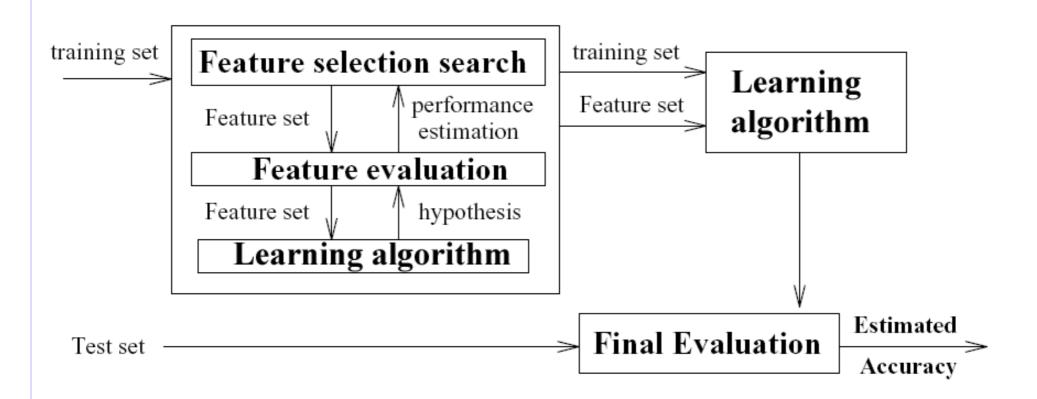
sometimes used as a preprocessing step for other methods

- Wrapper Methods
- Learner is considered a black-box

 Interface of the black-box is used to score subsets of variables according to the predictive power of the learner when using the subsets.

- Results vary for different learners
- One needs to define:
 - how to search the space of all possible variable subsets?
 - how to assess the prediction performance of a learner?

Wrapper Methods



- Wrapper Methods
- The problem of finding the optimal subset is NP-hard!
- A wide range of heuristic search strategies can be used.
 Two different classes:
 - Forward selection (start with empty feature set and add features at each step)
 - Backward elimination (start with full feature set and discard features at each step)
- predictive power is usually measured on a validation set or by cross-validation
- By using the learner as a black box wrappers are universal and simple!
- Criticism: a large amount of computation is required.

- Embedded Methods
- Specific to a given learning machine!

Performs variable selection (implicitly) in the process of training

- E.g. WINNOW-algorithm
- (linear unit with multiplicative updates)

Important points 1/2

- Feature selection can significantly increase the performance of a learning algorithm (both accuracy and computation time) – but it is not easy!
- One can work on problems with very highdimensional feature-spaces
- Relevance <-> Optimality
- Correlation and Mutual information between single variables and the target are often used as Ranking-Criteria of variables.

Important points 2/2

 One can not automatically discard variables with small scores – they may still be useful together with other variables.

Filters – Wrappers - Embedded Methods

How to search the space of all feature subsets?

How to asses performance of a learner that uses
 a particular feature subset?

THANK YOU!

Sources

- 1. Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. *Nature* Vol. 415(2002)
- 2. Ron Kohavi, George H. John: Wrappers for Feature Subset Selection. AIJ special issue on relevance (1996)
- 3. Isabelle Guyon and Steve Gunn. Nips feature selection challenge. http://www.nipsfsc.ecs.soton.ac.uk/, 2003.
- 4. Isabelle Guyon, Andre Elisseeff: An Introduction to Variable and Feature Selection. *Journal of Machine Learning Research 3* (2003) 1157-1182
- 5. Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex. *Nature* Vol. 415(2002)
- 6. Daphne Koller, Mehran Sahami: Toward Optimal Feature Selection. 13. ICML (1996) p. 248-292
- 7. Nick Littlestone: Learning Quickly When Irrelevant Attributes Abound: A New Linear-treshold Algorithm. *Machine Learning 2*, p. 285-318 (1987)
- 8. C. Ambroise, G.J. McLachlan: Selection bias in gene extraction on the basis of microarray gene-expresseion data. *PNAS* Vol. 99 6562-6566(2002)
- 9. E. Amaldi, V. Kann: The approximability of minimizing nonzero variables and unsatisfied relations in linear systems. (1997)

