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Overview 

Introduction/Motivation 

 

Basic definitions, Terminology 

 

Variable Ranking methods 

 

Feature subset selection 

 

WHY ? 

 

WHAT ? 

 

 

HOW ? 



<#> 
3/54 

Problem: Where to focus attention ? 

A universal problem of intelligent (learning) 
agents is where to focus their attention. 

 

What aspects of the problem at hand are 
important/necessary to solve it? 

 

Discriminate between the relevant and irrelevant 
parts of experience. 
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What is feature selection ? 

Feature selection:  
Problem of selecting some subset of a learning 
algorithm’s input variables upon which it should focus 
attention, while ignoring the rest  
(DIMENSIONALITY REDUCTION) 

 

Humans/animals do that constantly! 
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Motivational example from Biology 

Monkeys performing classification task 

 
? 

N. Sigala & N. Logothetis, 2002: Visual categorization shapes feature selectivity in the 
primate temporal cortex. 

[1] Nathasha Sigala, Nikos Logothetis: Visual categorization shapes feature selectivity in the primate visual cortex.  

      Nature Vol. 415(2002) 

[1] 
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Motivational example from Biology 

Monkeys performing classification task 

 

Diagnostic features: 
 - Eye height 
 - Eye separation  
 

All considered features: 
 - Eye height 
 - Eye separation  
 - Nose length 
 - Mouth height 

How many pairs of features? 

Non-Diagnostic features: 

- Nose length 
- Mouth height 
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Motivational example from Biology 

Monkeys performing classification task 

Results: 

activity of a population of 150 neurons in the anterior inferior 
temporal cortex was measured  

 

44 neurons responded significantly differently to at least one 
feature 

 

After Training: 72% (32/44) were selective to one or both of 
the diagnostic features (and not for the non-diagnostic 
features) 
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Feature Selection in ML ? 

Why even think about Feature Selection in ML? 

- The information about the target class is inherent in the 
variables! 

 
- Naive theoretical view:  

More features  
=> More information 
=> More discrimination power. 
 

- In practice:  
many reasons why this is not the case! 
 

- Also: 
Optimization is (usually) good, so why not try to optimize 
the input-coding ? 
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Introduction 

Large and high-dimensional data 

Web documents, etc… 

A large amount of resources are needed in 

 Information Retrieval 

 Classification tasks 

 Data Preservation etc… 

 

Dimension Reduction 
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Dimension Reduction 

Height 

(cm) 

Weight 

(kg) 
overweight 

underweig

ht 

140 150 

50 

60 

Dimension Reduction 

preserves information on classification of overweight and 
underweight as much as possible 

makes classification easier 

 reduces data size ( 2 features  1 feature ) 
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Dimension Reduction 

Feature Extraction (FE) 

Generates feature 

ex. 

 Preserves weight / 
height 

 

Feature Selection (FS) 

Selects feature 

ex. 

 Preserves weight 

Height 

(cm) 

Weight 

(kg) 

Height 

(cm) 

Weight 

(kg) 
Weight 

(kg) 

weight / height 



<#> 

Problem Setting 

Each of data       (    samples) is represented by     features  

Data belong to    different classes in supervised learning 

Dimension reduction is to generate or select     features              
preserving original information as much as possible in some 
criterion 

In most cases 

dimensions 

(features) 
dimensions 

samples classes 
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Feature Extraction 

Extracts features by projecting data to a lower-
dimensional space 

Unsupervised Method 

 Principal Component Analysis (PCA) 

 Independent Component Analysis (ICA) 

Supervised Method 

 Linear Discriminant Analysis (LDA) 

 Maximum Margin Criterion (MMC) 

 Orthogonal Centroid algorithm (OC) 

Finds an optimal projection matrix W  
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Principal Component Analysis 

Unsupervised Method 

PCA tries to maximize 

 

 

PCA needs Singular Value 

Decomposition calculation 

(SVD). 

  time complexity : 

  space complexity : 

 

 : covariance matrix 



<#> 

Linear Discriminant Analysis 

: Interclass scatter matrix 
 

: Intraclass scatter matrix 

Time complexity 

Space complexity 

Supervised method 
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Feature Selection in ML ? YES! 

- Many explored domains have hundreds to tens of 
thousands of variables/features with many irrelevant and 
redundant ones! 

 
- In domains with many features the underlying probability 

distribution can be very complex and very hard to 
estimate (e.g. dependencies between variables) ! 

 
- Irrelevant and redundant features can „confuse“ learners! 
 
- Limited training data! 
 
- Limited computational resources! 
 
- Curse of dimensionality! 
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Curse of dimensionality 

The required number m of samples (to achieve the same 
accuracy) grows exponentionally with the number of 
variables! PAC: m > |Hypothesis_space|  

In practice: number of training examples is fixed! 

 => the classifier’s performance usually will degrade for a large number 
of features! 

 

In many cases  

• the information that is lost by discarding 

variables  

is made up for by  

• a more accurate mapping/sampling in 

the lower-dimensional space ! 
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Věta o PAC učení rozhodovacího stromu 

Nechť objekty jsou charakterizovány pomocí n 
binárních atributů a nechť připouštíme jen hypotézy 
ve tvaru rozhodovacího stromu s maximální délkou 
větve k. Dále nechť ,   jsou malá pevně zvolená 
kladná čísla blízká 0. Pokud algoritmus strojového 
učení vygeneruje hypotézu , která je konzistentní se 
všemi m příklady trénovací množiny a platí  

m ≥ mk-DT(n) ≥ c ( nk  + ln (1/)) /   

  pak  je -skoro správná hypotéza s 
pravděpodobností větší než (1-), t.j. chyba hypotézy 
 na celém definičním oboru konceptu je menší než  
s pravděpodobností větší než (1-). 
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Example for ML-Problem 

Gene selection from microarray data 

Variables:  
gene expression coefficients corresponding to the amount of mRNA 
in a patient‘s sample (e.g. tissue biopsy) 

 

Task: Seperate healthy patients from cancer patients 

 

Usually there are only about 100 examples (patients) available for 
training and testing (!!!) 

Number of variables in the raw data: 6.000 – 60.000 

Does this work ? ([8]) 

 

[8] C. Ambroise, G.J. McLachlan: Selection bias in gene extraction on the basis of microarray gene-expresseion data.  

PNAS Vol. 99 6562-6566(2002) 
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Example for ML-Problem 

Text-Categorization 

- Documents are represented by a vector containing word 
frequency counts (its size  number of features is comparable 
to that of the vocabulary)  

 

- Vocabulary ~ 15.000 words (i.e. each document is represented 
by a 15.000-dimensional vector) 

 

- Typical tasks:  

- Automatic sorting of documents into web-directories 

- Detection of spam-email 
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Motivation 

Especially when dealing with a large number of 
variables there is a need for dimensionality 
reduction! 

 

Feature Selection can significantly improve a learning 
algorithm’s performance! 
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Overview 

Introduction/Motivation 

 

Basic definitions, Terminology  

 

Variable Ranking methods 

 

Feature subset selection 
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Feature Selection - Definition 

Given a set of features 

the Feature Selection problem is 

to find a subset               that “maximizes the learners 

ability to classify patterns”. 
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Feature Extraction-Definition 

Given a set of features 

the Feature Extraction(“Construction”) problem is 

is to map F to some feature set         that maximizes the 

learner’s ability to classify patterns (design new derived attributes) . 

 

F''
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Feature Selection – Optimality ? 

In theory the goal is to find an optimal feature-subset 
(one that maximizes the scoring function) 

 

In real world applications this is usually not possible 

 For most problems it is computationally intractable to search 
the whole space of possible feature subsets 

One usually has to settle for approximations of the optimal 
subset 

Most of the research in this area is devoted to finding efficient 
search-heuristics 
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Optimal feature subset 

Often: Definition of optimal feature subset in terms of 
classifier’s performance 

 

The best one can hope for theoretically is the Bayes error rate 

 

Given a learner I and training data L with features  

 F= {f1,….fi,…,fn} an optimal feature subset Fopt is a subset of F 
such that the accuracy of the learner’s hypothesis h is maximal 
(i.e. its performance is equal to an optimal Bayes classifier)*. 

 

• Fopt (under this definition) depends on I 

• Fopt need not be unique 

 Finding Fopt is usually computationally intractable 

 

* for this definition a possible scoring function is 1 – true_error(h) 
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Relevance of features 

Relevance of a variable/feature: 

There are several definitions of relevance in literature: 
 Relevance of 1 variable,  

 Relevance of a variable given other variables,  

 Relevance given a certain learning algorithm,.. 

 
Most definitions are problematic, because there are 

problems where all features would be declared to be 
irrelevant 

 
The authors of [2] define two degrees of relevance: weak 

and strong relevance. 
 
A feature is relevant iff it is weakly or strongly relevant 

and ”irrelevant”(redundant) otherwise. 
 

[1] R. Kohavi and G. John Wrappers for features selection. Artificial Intelligence, 97(1-2):273-324, December 1997 
[2] Ron Kohavi, George H. John: Wrappers for Feature Subset Selection. AIJ special issue on relevance (1996) 
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Relevance of featurs 

 Strong Relevance of a variable/feature: 

Let Si = {f1, …, fi-1, fi+1, …fn} be the set of all features except fi. 
Denote by si a value-assignment to all features in Si. 
 

A feature fi is strongly relevant, iff removal of fi alone will always 
result in a performance deterioration of an optimal Bayes 
classifier. 

 Weak Relevance of a variable/feature: 

A feature fi is weakly relevant, iff it is not strongly relevant, and 
there exists a subset of features Si‘ of Si for which there exists 

a subset of features Si‘, such that the performance of an 
optimal Bayes classifier on Si ‘ is worse than on  

  'i iS f
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Relevance of features 

Relevance       Optimality of Feature-Set 

Classifiers induced from training data are likely to be 
suboptimal (no access to the real distribution of the data) 

 

Relevance does not imply that the feature is in the optimal 
feature subset 

 

Even “irrelevant” features can improve a classifier‘s 
performance 

 

Defining relevance in terms of a given classifier (and 
therefore a hypothesis space) would be better. 

 





<#> 
31/54 

Overview 

Introduction/Motivation 

 

Basic definitions, Terminology 

 

Variable Ranking methods 

 

Feature subset selection 
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Variable Ranking 

Given a set of features F 

 Variable Ranking is the process of ordering the features 
by the value of some scoring function  S: F                  
(which usually measures feature-relevance) 

Resulting set:  
a permutation  of F:                                     with 

 

  
The score S(fi) is computed from the training data, 
measuring some criteria of feature fi. 

By convention a high score is indicative for a valuable 
(relevant) feature. 

1
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Variable Ranking – Feature Selection 

A simple method for feature selection using variable 
ranking is to select the k highest ranked features 
according to S. 

This is usually not optimal  

but often preferable to other, more complicated 
methods  

 

computationally efficient(!): only calculation and 
sorting of n scores 
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Ranking Criteria – Correlation 

Correlation Criteria: 

Pearson correlation coefficient 

 

 

 

Estimate for m samples: 
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The higher the correlation between the feature and the target, the higher the score!  
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Ranking Criteria – Correlation 



<#> 
36/54 

Ranking Criteria – Correlation 

Correlation Criteria: 

  

mostly  R(xi,y)² or |R(xi,y)|  is used 

measure for the goodness of linear fit of xi and y. 

   (can only detect linear dependencies between variable and   

target.) 

what if y = XOR(x1,x2) ? 

often used for microarray data analysis 

 ( , ) 1,1iXYR
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Ranking Criteria – Correlation 

Questions: 

 

Can variables with small score be automatically 
discarded ? 

 

Can a useless variable (i.e. one with a small score) be 
useful together with others ? 

  

Can two variables that are useless by themselves can be 
useful together?) 
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Ranking Criteria – Correlation 

• Can variables with small score 
be discarded without further 
consideration? NO! 
 

• Even variables with small score 
can improve class seperability! 

• Here this depends on the 
correlation between x1 and x2.  
 
(Here the class conditional distributions 
have a high covariance in the direction 
orthogonal to the line between the two 
class centers) 
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Ranking Criteria – Correlation 

 

•Example with high 
correlation between x1 and 
x2.   
 
(Here the class conditional 
distributions have a high 
covariance in the direction of the 
two class centers) 

 

•No gain in seperation ability 
by using two variables 
instead of just one! 
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Ranking Criteria – Correlation 

•Can a useless variable 
be useful together with 
others ? 

 YES! 
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Ranking Criteria – Correlation 

•correlation between variables and target are not 
enough to assess relevance! 

 

•correlation / covariance between pairs of variables has 
to be considered too! 

 (potentially difficult) 

 

•diversity of features 
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Ranking Criteria – Inf. Theory 

Information Theoretic Criteria 

Most approaches use (empirical estimates of) mutual 
information between features and the target: 

 

 

Case of discrete variables: 

 

   
(probabilities are estimated from frequency counts) 
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Ranking Criteria – Inf. Theory 

Mutual information can also detect non-linear 
dependencies among variables! 

 

But harder to estimate than correlation! 

 

It is a measure for “how much information (in terms of 
entropy) two random variables share” 
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Variable Ranking - SVC 

Single Variable Classifiers 

Idea: Select variables according to their individual predictive 
power 

criterion: Performance of a classifier built with 1 variable 

e.g. the value of the variable itself  

 (set treshold on the value of the variable) 

predictive power is usually measured in terms of error rate (or 
criteria using fpr, fnr) 

also: combination of SVCs using ensemble methods 
(boosting,…) 
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Overview 

Introduction/Motivation 

 

Basic definitions, Terminology 

 

Variable Ranking methods 

 

Feature subset selection 
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Feature Subset Selection 

Goal:  

 - Find the optimal feature subset. 

   (or at least a “good one.”) 

 

Classification of methods: 

Filters 

Wrappers 

Embedded Methods 
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Feature Subset Selection 

You need:  

a measure for assessing the goodness of a feature subset 
(scoring function) 

 

a strategy to search the space of possible feature subsets  

 

Finding a minimal optimal feature set for an arbitrary 
target concept is NP-hard 

 => Good heuristics are needed! 

[9] E. Amaldi, V. Kann: The approximability of minimizing nonzero variables and unsatisfied relations in linear systems. (1997) 
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Feature Subset Selection 

 Filter Methods 

• Select subsets of variables as a pre-processing 
step, 
independently of the used classifier!! 

 

 

• Note that Variable Ranking-FS is a filter method 
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Feature Subset Selection 

 Filter Methods 

• usually fast 

 

• provide generic selection of features, not tuned by given 
learner (universal) 

 

• this is also often criticised (feature set not optimized for used 
classifier) 

 

• sometimes used as a preprocessing step for other methods 
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Feature Subset Selection 

 Wrapper Methods 

• Learner is considered a black-box 

 

• Interface of the black-box is used to score subsets of variables 
according to the predictive power of the learner when using the 
subsets. 

 

• Results vary for different learners 

• One needs to define: 

– how to search the space of all possible variable subsets ? 

– how to assess the prediction performance of a learner ? 
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Feature Subset Selection 

Wrapper Methods 
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Feature Subset Selection 

 Wrapper Methods 

• The problem of finding the optimal subset is NP-hard! 

 

• A wide range of heuristic search strategies can be used.  
Two different classes: 

– Forward selection  
(start with empty feature set and add features at each step) 

– Backward elimination 
(start with full feature set and discard features at each step) 
 

• predictive power is usually measured on a validation set or by 
cross-validation 

• By using the learner as a black box wrappers are universal and 
simple! 

• Criticism: a large amount of computation is required. 
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Feature Subset Selection 

 Embedded Methods 

• Specific to a given learning machine! 

 

• Performs variable selection (implicitly) in the process of training 

 

• E.g. WINNOW-algorithm 

  (linear unit with multiplicative updates) 
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Important points 1/2 

• Feature selection can significantly increase the 
performance of a learning algorithm (both accuracy 
and computation time) – but it is not easy! 

• One can work on problems with very high- 
dimensional feature-spaces 

• Relevance <-> Optimality 

• Correlation and Mutual information between single 
variables and the target are often used as Ranking-
Criteria of variables. 
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Important points 2/2 

• One can not automatically discard variables with 
small scores – they may still be useful together 
with other variables.  

 

• Filters – Wrappers - Embedded Methods 

 

• How to search the space of all feature subsets ? 

 

• How to asses performance of a learner that uses 
a particular feature subset ? 
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THANK YOU! 
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