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Approximation IApproximation I
Basic Idea: Represent the time 

series as a sequence of straight 

lines.

Lines could be connected, in 

which case we are allowed

N/2 lines

If lines are disconnected, we 

are allowed only N/3 lines 

Personal experience on dozens of datasets 

suggest disconnected is better. Also only 

disconnected allows a lower bounding 

Euclidean approximation

Each line segment has 
• length 

• left_height

(right_height can 

be inferred by looking at 

the next segment)

Each line segment has 
• length 

• left_height 

• right_height
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Defining Distance MeasuresDefining Distance Measures

Definition: Let O1 and O2 be two objects from 

the universe of possible objects. The distance 

(dissimilarity) is denoted by D(O1,O2)

• D(A,B) = D(B,A) Symmetry 

• D(A,A) = 0 Constancy

• D(A,B) = 0 IIf A= B Positivity

• D(A,B)  D(A,C) + D(B,C) Triangular Inequality

What properties are desirable 
in a distance measure?

What properties are desirable 
in a distance measure?



What are Time Series? 
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A time series is a collection of observations made 
sequentially in time.  

Virtually all similarity measurements, 
indexing and dimensionality reduction 
techniques discussed in this tutorial can 
be used with other data types 



 
Motivating example … 

You go to the doctor 
because of chest pains. 
Your ECG looks strange… 
 
Your doctor wants to 
search a database to find 
similar ECGs, in the hope 
that they will offer clues 
about your condition... 

Two questions:  
•How do we define similar? – distance measures 

•How do we find it quickly?  



What else can be viewed and processed in a similar way? 

a) Images, 
videos, … 
 

b)  texts 

c) writting 
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Text data, may best be thought of as time series… 

0 1 2 3 4 5 6 7 8 
x 10 

5 
0 

Blue: “God” -English Bible  

Red: “Dios” -Spanish Bible 

Gray: “El Senor” -Spanish Bible 

The local frequency 
of words in the Bible 



What types of tasks do we want to accomplish? 

 Clustering  Classification 

Query by 
Content 

Rule 
Discovery 

10 

 
s = 0.5 
c = 0.3 

Motif Discovery 

  Novelty Detection Visualization 

Simmilarity (podobnost) is a key point 



Why is Working With Time Series so 
Difficult?  Part I  
 

•1 Hour of EKG data: 1 Gigabyte.  

•Typical Weblog: 5 Gigabytes per week. 

•Space Shuttle Database: 200 Gigabytes and growing. 

 

1. Huge size of data  requirements on very efficient representation 
and on the used algorithms (so that the external memory does not 
have to be accessed too often). 

2. Problems resulting from the need to merge data from various 
sources: 

• Different format.  

• Nonequal sampling frequencies 

• Noise, lacking values, …. 

 



Why is Working With Time Series so 
Difficult? Part II  
 

The definition of  similarity depends on the user, the domain and 

the task at hand. We need to be able to handle this subjectivity. 

Answer: We are dealing with subjectivity 



Defining Distance Measures 

Definition: Let O1 and O2 be two objects from 

the universe of possible objects. The distance 

(dissimilarity) is denoted by D(O1,O2) 
 

 

 

 

 

 

 

• D(A,B) = D(B,A)  Symmetry  

• D(A,A) = 0   Constancy 

• D(A,B) = 0 iff A= B   Positivity 

• D(A,B)  D(A,C) + D(B,C) Triangular Inequality  

 

What properties are desirable in 
a distance measure? 
 



Why is the Triangular Inequality so Important? 
Virtually all techniques to index data require the triangular inequality to hold. 
Why? Let us suppose that given Q we are expected to select among 3  points 
a, b and c the point with minimal distance to Q.   

a 

b 
c 

Q 

I find a and calculate that it is 2 units from Q, 
it becomes my best-so-far. I find b and 
calculate that it is 7.81 units away from Q. 

I don’t have to calculate the distance from Q 

to c! 
 

   I know           D(Q,b)  D(Q,c) + D(b,c) 
 D(Q,b) - D(b,c)  D(Q,c) 
         7.81 - 2.30  D(Q,c) 
                   5.51  D(Q,c) 

So I know that c is at least 5.51 units away, 
but my best-so-far is only 2 units away. 

 a b c 

a 6.70 7.07 

b 2.30 

c 
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Euclidean Distance Metric 

About 80% of published 
work in data mining uses 
Euclidean distance 

Given two time series: 
  Q = q1…qn  
 C = c1…cn  

 

 



Preprocessing and Linear Transformations 

TI: Offset Translation  TII: Amplitude Scaling  
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Q = (Q - mean(Q)) / std(Q) 
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TIII: Linear Trend 

TIV: Noise  
 

The original signal s1 is approxima-
ted by a line l1: the new signal is 
their difference (s1 – l1).  
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Q = Q - 
mean(Q) 

TIII, TI a 
TIII, TI a TII 

aplik 

Smoothing: Each value of the signal is 
replaced by the average of the values in its 
close neighborhood. 
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A Quick Experiment to Demonstrate  
the Utility of Preprocessing the Data  
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Clustered using Euclidean 
distance, after removing 
noise, linear trend, offset 
translation  and amplitude 
scaling 

Clustered using 
Euclidean 
distance on the 
raw data. 



Fixed Time Axis 
Sequences are aligned “one to one”. 

“Warped” Time Axis 
Nonlinear alignments are possible. 

Dynamic Time Warping 
Dynamické borcení času 

 

Note: We will first see the utility of DTW, then see how it is calculated. 



Mountain Gorilla 
Gorilla gorilla beringei 

Lowland Gorilla 
Gorilla gorilla graueri 

DTW is needed 
for most natural 
objects…   
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How is DTW 
Calculated? I 

We create a matrix the size of 
|Q| by |C|, then fill it in with 
the distance between every 
pair of points in our two time 
series. 

Estimated complexity (number of 
all possible WPs) in a matrix n x n ? 

 

Upper bound is 3n 
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How is DTW 
Calculated? II 
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Warping path w 

Every possible warping between two 
time series, is a path though the matrix. 
We want the best one… 

(i,j)  = d(qi,cj) + min{ (i-1,j-1), (i-1,j ), (i,j-1) } 

This recursive function gives us the 
minimum cost path 



Let us visualize the cumulative matrix on a real world problem I 

This example shows 2 
one-week periods from 
the power demand time 
series. 
 
Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday. 



Are Fast Approximations to Dynamic Time Warp Distance  Usefull? 

0.07 sec 

1.03 sec 

… there is strong visual evidence to suggests it 
works well 
 There is good experimental evidence for the 
utility of the approach on clustering, classification, 
etc 
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Sakoe-Chiba Band Itakura Parallelogram 

Global Constraints  
• Slightly speed up the calculations 
• Prevent pathological warpings 

Warping Window 

Size  



How to speed up calculation of distance? 
Lower Bounding 

1. best_so_far = infinity; 
2. for all sequences in database 
3. LB_dist = lower_bound_distance( 
4. if LB_dist <  best_so_far 
5. true_dist = DTW( 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  

1. best_so_far = infinity; 
2. for all sequences in database 
3. 
4. if LB_dist <  best_so_far 
5. C i , Q); C i , Q); 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  

We can speed up similarity search under DTW by using a lower 
bounding function 

C i , Q); C i , Q); 

Only do the 
expensive, full 
calculations when 
it is absolutely 
necessary 
 
 

Try to use a cheap 
lower bounding 
calculation as 
often as possible. 

 



Lower Bound of Yi 

The sum of the squared length of gray 
lines represent the minimum the 
corresponding points contribution to the 
overall DTW distance, and thus can be 
returned as the lower bounding measure  

Yi, B, Jagadish, H & Faloutsos, C. 
Efficient retrieval of similar time 
sequences under time warping. 
ICDE 98, pp 23-27.  

max(Q) 

min(Q) 
LB_Yi 



A 

B 

C 

D 

The squared difference between the two 
sequence’s first (A), last (D), minimum (B) 
and maximum points (C) is returned as 
the lower bound  

Kim, S, Park, S, & Chu, W.  An 
index-based approach for 
similarity search supporting time 
warping in large sequence 
databases. ICDE 01, pp 607-614  

LB_Kim 

Lower Bound of Kim 
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Sakoe-Chiba Band 

Ui = max(qi-r : qi+r) 

Li  = min(qi-r : qi+r) 

Lower Bound of Keogh 
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Nuclear Trace  
Dataset 

No Lower Bound 

LB-Keogh 
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This plot tells us that although DTW is O(n2), after we 
set the warping window for maximum accuracy for this 
problem, we only have to do 6% of the work, and if we 
use the LB_Keogh lower bound, we only have to do 0.3% 
of the work! 
 

How Useful are Lower Bounds? 



…DTW is linear for data 
mining problems! 

Frequent myths about DTW … 

• “DTW incurs a heavy CPU cost”1 

•“DTW is limited to only small time series datasets”2 

•“(DTW) quadratic cost makes its application on 
databases of long time series very expensive”3 

• “(DTW suffers from ) serious performance 
degradation in large databases”4 

This is simply not true! 
 
  



LB_Keogh can be used 
to index shapes with 
rotation invariance 

Crocodylidae  

Success Story 
IIII 

Iguania Chelonia 

Amphisbaenia 

Alligatoridae  
Alligatorinae  



The lower bounding 
technique is being used 
by ChevronTexaco for 
comparing seismic data  
 
Thanks of  Steve Zoraster 
for the figure 

Success Story 



Uniform Scaling I 

sf = 1.00   

sf = 1.41 

CDC28 

CDC15 

Two genes that are known 

to be functionally related…  Sometimes 
global or 
uniform scaling 
is as important 
as DTW 



Algorithm: Test_All_Scalings(Q,C) 

        best_match_val    = inf; 

        best_scaling_factor = null; 

         for p = n to m 

   QP = rescale(Q,p); 

    distance = squared_Euclidean_distance(QP, C[1..p]); 

    if distance <  best_match_val 

       best_match_val = distance; 

       best_scaling_factor = p/n; 

   end; 

         end; 

     return(best_match_val, best_scaling_factor)  

Here is the code to 
Test_All_Scalings, 
the time complexly 
is only O((m-n) * n), 
but we may have to 
do this many 
times…  

Here is some notation, the 
shortest scaling we 
consider is length n, and 
the largest is length m. 

The scaling factor (sf) is 
the ratio i/n , n <= i <= m 

 

n i m 



Lower Bounding Revisited! 
We can speed up similarity search under uniform scaling by using a lower 
bounding function, just like we did for DTW. 

Algorithm: Lower_Bounding_Sequential_Scan(Q,C) 
overall_best_time_series = null; 
overall_best_match_val   = inf; 
for i = 1 to number_of_time_series_in_(C)  

    if  lower_bound_distance(Q,Ci) < overall_best_match_val    

      [dist, scale] = Test_All_Scalings(Q,Ci)  
        if dist <  overall_best_match_val    
 overall_best_time_series =  i; 
 overall_best_match_val   = dist; 
       end; 
    end; 
end; 

But is there 
a lower bound 
for uniform 
scaling? 
 
 

You have 
already seen 
this idea for 
DTW! 
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n = 80 

m = 100 

Ui = max( c (i-1)*m/n +1,…, c i*m/n  ) 
 

Li = min( c (i-1)*m/n +1,…, c i*m/n  ) 
 

Assume that you have a database of time 
series Ci, all of length 100. 

You have a query Q,  of length 80, and 
you want to find the best match in the 
database under any scaling of Q, from 80 
to 100. 

We can build envelopes 
around all candidates time 
series Ci, in our database, 
just like we did for DTW, 
except the definition of the 
envelopes is different. 
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Once the envelopes have been 
built, we can lower bound 
Test_All_Scalings. 

What's more, the lower bound is 
one we have already seen! 

Q  
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This is the time taken 
by brute force search  

CD-criterion is the only 
other lower bound for 
uniform scaling 

An experiment to test the 
utility of lower bounding 
uniform scaling, over different 
scaling factors (Y-axis) and 
scaling lengths (X-axis). The 
dataset was a “mixed bag” of 
10,000 assorted time series. 



Apart from making DTW tractable for data 
mining for the first time, envelope based 
techniques also allow… 

1.  More accurate classification (SDM04) 

2.  Indexing with uniform scaling (VLDB04) 

3.  Faster Euclidean indexing (TKDE04) 

4.  Subsequence matching (IDEAS03) 

5.  Multivariate time series indexing (SIGKDD03) 

6.  Rotation invariant indexing (SIGKDD04) 

7.  DTW on Streaming time series (to appear) 

8.  Indexing of Images (TPAMI-04, VIS-05) 

We strongly feel that envelope based techniques 
are the best solutions for time series similarity 



 
Motivating example revisited… 

You go to the doctor 
because of chest pains. 
Your ECG looks strange… 
 
Your doctor wants to 
search a database to find 
similar ECGs, in the hope 
that they will offer clues 
about your condition... 

Two questions:  
•How do we define similar? 

•How do we search quickly? 



Euclidean 
Distance 

For long time 
series, shape 
based similarity 
will give very 
poor results. We 
need to measure 
similarly based 
on high level 
structure 



Structure or Model Based Similarity  

A 
B 
C 

A B C 
Max Value 11 12 19 

Autocorrelation 0.2 0.3 0.5 

Zero Crossings 98 82 13 

ARIMA 0.3 0.4 0.1 

… … … … 

Feature 

Time    
       Series 

The basic idea is to 
extract global features 
from the time series, 
create a feature 
vector, and use these 
feature vectors to 
measure similarity 
and/or classify  

But which 
• features? 
• distance measure/ 
learning algorithm? 



Time Series Representations 

Data Adaptive Non Data Adaptive 

Spectral Wavelets Piecewise 
Aggregate  
Approximation 

Piecewise  
Polynomial 

Symbolic Singular 
Value 
 Approximation 

Random  
Mappings 

Piecewise 
Linear 
Approximation 

Adaptive 
Piecewise 
Constant 
Approximation 
 

Discrete  
Fourier  
Transform 

Discrete 
Cosine 
Transform 

Haar Daubechies  
dbn   n > 1 

Coiflets Symlets 

Sorted 
Coefficients  

Orthonormal Bi-Orthonormal 

Interpolation Regression 

Trees 

Natural 
Language  

Strings 

Symbolic 
Aggregate 
Approximation   

Non 
Lower 
Bounding   

Chebyshev 
Polynomials  

Data Dictated Model Based 

Hidden 
Markov 
Models 

Statistical 
Models 

Value 
Based 

Slope Based 

Grid Clipped 
Data 



• Create an approximation of the data, which will fit in main 
memory, yet retains the essential features of interest 

 
• Approximately solve the problem at hand in main memory 

 

• Make (hopefully very few) accesses to the original data on disk 
to confirm the solution obtained in Step 2, or to modify the 
solution so it agrees with the solution we would have obtained 
on the original data 
 

The Generic Data Mining Algorithm (revisited)  

This only works if the approximation 
allows lower bounding 

 



• Recall that we have seen lower bounding for distance measures (DTW and 

uniform scaling) Lower bounding for representations is a similar idea… 

 

What is Lower Bounding?   
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Lower bounding means that for all Q and S, we have:  

DLB(Q’,S’)  D(Q,S) 

Raw Data 
 
 
 
 
 
Approximation  
or  
“Representation” 
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An Example of a 
Dimensionality Reduction 
Technique II 
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Raw 
Data 

We can decompose the 
data into 64 pure sine 
waves using the Discrete 
Fourier Transform (DFT) - 
just the first few sine 
waves are shown. 
 
The Fourier Coefficients 
are reproduced as a 
column of numbers (just 
the first 30 or so 
coefficients are shown). 
 
Note that at this stage we 
have not done 
dimensionality reduction, 
we have merely changed 
the representation... 
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Dimensionality Reduction 
Technique III 
     1.5698 

    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 
Coefficients 

C’ 

We have discarded  

of the data. 
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Raw 
Data 

 
… however, note that the first 
few sine waves tend to be 
the largest (equivalently, the 
magnitude of the Fourier 
coefficients tend to decrease 
as you move down the 
column). 
We can therefore truncate 
most of the small coefficients 
with little effect.  

n = 128 
N = 8 
Cratio = 1/16 



An Example of a 
Dimensionality Reduction 
Technique IIII 
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    0.8770 
    0.1557 
    0.4528 
     

Truncated 
Fourier 
Coefficients 2 

- 
- 
- 
- 
- 
- 
- 
- 

 
The Euclidean distance between 
the two truncated Fourier 
coefficient vectors is always less 
than or equal to the Euclidean 
distance between the two raw 
data vectors*.  
 
So DFT allows lower bounding! 
 
*Parseval's Theorem  

    


n

i
ii cqCQD

1

2
,





    1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 
Coefficients 1 

0.4995 
0.5264 
0.5523 
0.5761 
0.5973 
0.6153 
0.6301 
0.6420 
0.6515 
0.6596 
0.6672 
0.6751 
0.6843 
0.6954 
0.7086 
0.7240 
0.7412 
0.7595 

Raw 
Data 1 

    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 

Raw 
Data 2 

    1.1198 
    1.4322 
    1.0100 
    0.4326 
    0.5609 
    0.8770 
    0.1557 
    0.4528 
     

Truncated 
Fourier 
Coefficients 2 

Mini Review for the Generic Data Mining Algorithm 

    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 

Raw 
Data n 

    1.3434 
    1.4343 
    1.4643 
    0.7635 
    0.5448 
    0.4464 
    0.7932 
    0.2126 
     

Truncated 
Fourier 
Coefficients n 

We cannot fit all that raw data in main memory.  
We can fit the dimensionally reduced data in main memory. 
 

So we will solve the problem at hand on 
the dimensionally reduced data, making a 
few accesses to the raw data were 
necessary, and, if we are careful, the lower 
bounding property will insure that we get 
the right answer! 

Disk 

Main 

Memory 
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Haar 0 

Haar 1 

Haar 2 

Haar 3 

Haar 4 

Haar 5 

Haar 6 

Haar 7 

X 

X' 

DWT 

Discrete Wavelet 
Transform I 

Alfred Haar 

1885-1933 

 

Excellent free Wavelets Primer 

Stollnitz, E., DeRose, T., & Salesin, D. (1995). Wavelets for 
computer graphics A primer: IEEE Computer Graphics and 
Applications. 

Basic Idea: Represent the time 
series as a linear combination of 
Wavelet basis functions, but keep 
only the first N coefficients. 
 
Although there are many different 
types of wavelets, researchers in 
time series mining/indexing 
generally use Haar wavelets.   
 
Haar wavelets seem to be as 
powerful as the other wavelets for 
most problems and are very easy to 
code. 



Piecewise Aggregate 
Approximation I 
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Given the reduced dimensionality representation 
we can calculate the approximate Euclidean 
distance as... 

This measure is provably lower bounding. 

Basic Idea: Represent the time series as a 
sequence of N box basis functions.  
 
Note that each box is of the same length (n/N).  
 

Independently introduced by two authors 
• Keogh, Chakrabarti, Pazzani & Mehrotra, KAIS (2000) / Keogh & 
Pazzani PAKDD April 2000 

• Byoung-Kee Yi, Christos Faloutsos, VLDB September 2000 
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eigenwave 3 
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eigenwave 6 
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SVD 

Singular Value 
Decomposition I 

Eugenio Beltrami  

1835-1899 

 

Camille Jordan 

 (1838--1921) 

 

 

James Joseph Sylvester  

1814-1897 

 

Basic Idea: Represent the time 
series as a linear combination of 
eigenwaves but keep only the first 
N coefficients. 
 
SVD is similar to Fourier and 
Wavelet approaches is that we 
represent the data in terms of a 
linear combination of shapes (in 
this case eigenwaves). 
 
SVD differs in that the eigenwaves 
are data dependent.   
 
SVD has been successfully used in the text 
processing community (where it is known as 
Latent Symantec Indexing ) for many years. 
 

Good free SVD Primer  

Singular Value Decomposition - A Primer. 
Sonia Leach 
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Piecewise Linear 
Approximation 

Basic Idea: Represent the time 
series as a sequence of 
straight lines. 
 
 
Lines could be connected, in 
which case we are allowed 
N/2 lines 
 
 
 
If lines are disconnected, we 
are allowed only N/3 lines  
 
Personal experience on dozens of datasets 
suggest disconnected is better. Also only 
disconnected allows a lower bounding 
Euclidean approximation 

Each line segment has  
• length  

• left_height  
(right_height can 
be inferred by looking at 
the next segment) 

Each line segment has  
• length  

• left_height  

• right_height 

Karl Friedrich Gauss, 1777 - 1855 

 

•Good ability to compress natural signals. 
• Fast linear time algorithms for PLA exist.  

•Already widely accepted in some communities (e.g. biomedical)  
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Symbolic 
Approximation I 

Basic Idea: Convert the time series into an alphabet 
of discrete symbols. Use string indexing techniques 
to manage the data. 
 
Potentially an interesting idea, but all work thus far 
are very ad hoc. 

Pros and Cons of Symbolic Approximation 
as a time series representation. 
 
• Potentially, we could take advantage of a wealth 
of techniques from the very mature field of string 
processing and bioinformatics. 

 
• It is not clear how we should discretize the times 
series (discretize the values, the slope, shapes? How 
big of an alphabet? etc). 

 
• There are more than 210 different variants of this, 
at least 35 in data mining conferences. 

 



Summary of Time Series Similarity 

• If you have short time series, use DTW after 
searching over the warping window size1 (and 
shape2) 
• Then use envelope based lower bounds to speed 
things up3. 

 
• If you have long time series, and you know 
nothing about your data, try compression based 
dissimilarity. 
• If you do know something about your data, try to 
leverage of this knowledge to extract features.   


