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Motivation for  

sequence modeling 

tctgaaatgagctgttgacaattaatcatcgaactagttaactagtacgcaagttca!

accggaagaaaaccgtgacattttaacacgtttgttacaaggtaaaggcgacgccgc!

aaattaaaattttattgacttaggtcactaaatactttaaccaatataggcatagcg!

ttgtcataatcgacttgtaaaccaaattgaaaagatttaggtttacaagtctacacc!

catcctcgcaccagtcgacgacggtttacgctttacgtatagtggcgacaatttttt!

tccagtataatttgttggcataattaagtacgacgagtaaaattacatacctgcccg!

acagttatccactattcctgtggataaccatgtgtattagagttagaaaacacgagg!

atagtctcagagtcttgacctactacgccagcattttggcggtgtaagctaaccatt!

aactcaaggctgatacggcgagacttgcgagccttgtccttgcggtacacagcagcg!

ttactgtgaacattattcgtctccgcgactacgatgagatgcctgagtgcttccgtt!

tattctcaacaagattaaccgacagattcaatctcgtggatggacgttcaacattga!

aacgagtcaatcagaccgctttgactctggtattactgtgaacattattcgtctccg!

aagtgcttagcttcaaggtcacggatacgaccgaagcgagcctcgtcctcaatggcc!

gaagaccacgcctcgccaccgagtagacccttagagagcatgtcagcctcgacaact!

ccatcaaaaaaatattctcaacataaaaaactttgtgtaatacttgtaacgctacat!

these sequences are E. coli promoters 

these sequences are not promoters 

How can we tell the difference?  Is this sequence a promoter? 



Motivation for Markov models in 

computational biology 

•! there are many cases in which we would like to represent 

the statistical regularities of some class of sequences 

–! genes 

–! various regulatory sites in DNA (e.g. promoters) 

–! proteins in a given family 

–! etc. 

•! Markov models are well suited to this type of task 
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transition probabilities 
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P(xi = a | xi"1 = g) = 0.16

P(xi = c | xi"1 = g) = 0.34

P(xi = g | xi"1 = g) = 0.38

P(xi = t | xi"1 = g) = 0.12
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•! can also have an end state; allows the model to represent 

–! a distribution over sequences of different lengths 

–! preferences for ending sequences with certain symbols 

Markov chain models 

begin end 
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Markov chain models 

•! a Markov chain model is defined by 

–! a set of states 

•! some states emit symbols 

•! other states (e.g. the begin and end states) are silent 

–! a set of transitions with associated probabilities 

•! the transitions emanating from a given state define a 

distribution over the possible next states 



Markov chain models 

•! Let X be a sequence of random variables X
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representing a biological sequence 

•! from the chain rule of probability 
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Markov chain models 

•! from the chain rule we have 

•! key property of a (1st order) Markov chain: the 

probability of each       depends only on the value of  
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The probability of a sequence for a 

given Markov chain model 
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P(cggt) =  P(c)P(g | c)P(g | g)P(t | g)P(end | t)

Markov chain notation 

•! the transition parameters can be denoted by           where 

•! similarly we can denote the probability of a sequence x as 

where         represents the transition from the begin state  
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Estimating the model parameters 

•! Given some data, how can we determine the 
probability parameters of our model? 

•! one approach: maximum likelihood estimation 

–! given a set of data D!
–! set the parameters      to maximize 

–! i.e. make the data D look as likely as possible 
under the model 
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Maximum likelihood estimation 

•! suppose we want to estimate the parameters   P(a), 

P(c), P(g), P(t) 

•! and we’re given the sequences 

accgcgctta 

gcttagtgac 

tagccgttac 

•! then the maximum likelihood estimates are 
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= 0.233

P(t) =
8

30
= 0.267

! 

P(a) =
6

30
= 0.2

P(c) =
9

30
= 0.3

! 

P(a) =
n
a

n
i

i

"



Maximum likelihood estimation 

•! suppose instead we saw the following sequences 

gccgcgcttg 

gcttggtggc 

tggccgttgc 

•! then the maximum likelihood estimates are 

! 

P(g) =
13

30
= 0.433

P(t) =
8

30
= 0.267

! 

P(a) =
0

30
= 0

P(c) =
9

30
= 0.3

do we really want to set this to 0? 

A Bayesian approach 

•! instead of estimating parameters strictly from the 
data, we could start with some prior belief for each 

•! for example, we could use Laplace estimates 

•! where       represents the number of occurrences of 
character i!
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•! using Laplace estimates with the sequences 

gccgcgcttg 

gcttggtggc 

tggccgttgc 
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P(a) =
0 +1
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A Bayesian approach 

•! a more general form: m-estimates 
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•! with m=8 and uniform priors 

gccgcgcttg 

gcttggtggc 

tggccgttgc 

number of  “virtual” instances 

prior probability of a 

! 

P(c) =
9 + 0.25 " 8

30 + 8
=
11
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Estimation for 1st order probabilities 

•! to estimate a 1st order parameter, such as P(c|g), we 
count the number of times that g follows the history c 
in our given sequences 

•! using Laplace estimates with the sequences 

gccgcgcttg 

gcttggtggc 

tggccgttgc 

! 

P(a | g) =
0 +1

12 + 4

P(c | g) =
7 +1

12 + 4

P(g | g) =
3+1

12 + 4

P(t | g) =
2 +1

12 + 4
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P(a | c) =
0 +1
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