
1 / 55

How to create accessible SW

Zdeněk Míkovec

dept. of computer graphics and interaction

Czech Technical University in Prague



2 / 55

What it means accessible?

� Visual impairment
– control: keyboard navigation

– presentation: audio/haptic; large graphics

– data input: keyboard, gestures

� Motor impairment
– control: large controls for direct manipulation (mouse, 

touch), keyboard navigation

– presentation: <no limitations>

– data input: keyboard, virtual keyboard, voice, direct 
manipulation

� Hearing impairment
– control: keyboard/mouse navigation

– presentation: visual/haptic

– data input: keyboard, direct manipulation (mouse, touch)



3 / 55

What it means accessible?

� What about combinations?

– Deaf-blind impairment

– Motor-blind impairment

– Motor-deaf impairment



4 / 55

Accessible RIA



5 / 55

RIA 

� What is Rich Internet Application (RIA)?

– New approach on Internet

– Websites look more like desktop applications

� Online documents

� E-mail

� Instant messaging

� Calendar

� Social networking

� Number of RIA rapidly increasing

� Possible benefits for handicapped people 

working with Internet



6 / 55

RIA +/-

� RIA pros

– Higher comfort

� Suggestions

� Immediate feedback

– Better user experience

� Drag&Drop

� Sophisticated 

components (tree, 

collapsible panel)

– Dynamics

� Chat

� Shared data

� Collaboration

� RIA cons
– Not transparent

� Many concurrent 
changes

� Complex components

– Unclear structure

� Content (not in HTML)

� Semantics in code of 
scripts

– Problematic keyboard 
navigation

– Difficult controlling of 
components

– Dependency on 
JavaScript



7 / 55

WAI-ARIA

� RIA is less accessible than "standard" web pages

– How this can be solved?

� Web Accessibility Initiative (WAI)

– part of W3C consortium

� Accessible Rich Internet Application suite of W3C 

(WAI-ARIA)

– Working draft

– Recommendations on how to make RIA accessible

� Additional metadata

� Bring back the semantics into HTML code

– No restrictions on current functionality



8 / 55

a11y issues tackled by ARIA

� Keyboard-only operation impossible

� Orientation in content

– Missing appropriate labels

– Hiding of some content without announcement

� Tab panels

� Collapsible panels

� Controlling of UI components

– Wrong or missing tab order

– Focus stacking or disappearing

– Wrong or missing status announcement 

� Checkbox

� Radio Button

� Slider 

aria-labeledby

aria-expanded

tabindex

checked



9 / 55

RIA and a11y



10 / 55

RIA and a11y



11 / 55

RIA and a11y



12 / 55

Creation of ARIA



13 / 55

Rich environment of RIA

� Modern RIA applications are build from 

components

– Tree

– Tabs

– Accordion

– Grid

– etc.



14 / 55

Rich world of RIA

� Web environment is extremely variable

� Accessibility depends on:

– Type of OS
� Windows, Linux, Mac, J

– Type of Web browser
� Firefox, IE, Safari, Chrome, J

– Type of Screen reader
� Jaws, NVDA, Orca, J

� No configuration is 100% ARIA compliant



15 / 55

Three steps towards accessible RIA

1. Accessibility of RIA components

2. Accessibility of RIA applications

3. Testing of application accessibility



16 / 55

Three steps towards accessible RIA

1. Accessibility of RIA components

2. Accessibility of RIA applications

3. Testing of application accessibility



17 / 55

Offline component prototype

<HTML>

JS

Web BrowserServer User

<HTML>

JS

JS

<HTML>

CSS

<HTML>

JS

<HTML>

CSS

JS

? ?

?



18 / 55

Offline component prototype

<HTML>

JS

<HTML>

CSS

JS <ARIA>+
<HTML>

JS

<ARIA>

=

<HTML>

JS

<HTML>

CSS

JS

<ARIA>

+?



19 / 55

Accessibility of RIA 

components

1. Create offline component prototype

2. Simplify the component architecture

3. Add WAI-ARIA attributes into offline 

component prototypes

– Implementing ARIA attributes

– Implementing keyboard navigation

4. Implement changes back to the server

– Test whether results are accessible



20 / 55

Three steps towards accessible RIA

1. Accessibility of RIA components

2. Accessibility of RIA applications

3. Testing of application accessibility



21 / 55

Issues to be implemented

� Navigation on the page

� Relationships between components

� Dynamic changes of presented information

� Created set of 11 heuristics based on 

Nealson’s usability heuristics



22 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking



23 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Screen readers and another assistive technologies 

use several browsing modes. Make sure all parts of 

the web page are accessible at least with “virtual 

cursor” and “forms mode”. In forms mode all 

information in the form area must be linked to one of 

the form elements as a label or description.



24 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Icons and other similar visual elements that carry 

information to the user should have a textual 

alternative available. The only exception is when a 

non-textual element is used for decoration or layout 

purposes.



25 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Headings are the only elements with various levels of 

importance. They are often used to scan the 

content and should be used when possible to denote 

sections.



26 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

When showing larger section move focus to the 

section. When showing a tooltip all content should 

be connected as description.



27 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Use on-the-fly validation where possible. Use live 

regions to communicate asynchronous messages.



28 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Connect menus with corresponding dynamically 

loaded sections using aria-controls.



29 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

All components that have their Roles identified in 

WAI-ARIA should be marked using appropriate Role.



30 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking
Use design patterns defined in WAI-ARIA or 

DHTML Style Guide to determine the proper 

keyboard navigation before implementing your own.



31 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Identify as many common structure parts as possible 

and apply WAI-ARIA landmark roles to them.



32 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Menus should be close in the means of tab order to 

the sections they are affecting. Tab order is 

important as it is used to quickly scan the page for 

interactive components. If the tab order is faulty, the 

mental model of the web page will likely be incorrect.



33 / 55

Heuristics

1. Design with screen reader modes in mind

2. Provide text alternative for all non-textual elements 

3. Use headings to mark important areas

4. Handle hidden section appropriately

5. Communicate important information and feedback as soon as 
possible

6. Create proper linkage of controls, labels and messages

7. Distinguish all components

8. Define complete keyboard operation and where possible, 
standardize

9. Define document structure with ARIA landmarks

10. Provide a logical tab order

11. Use buttons for functions and links for linking

Make clear distinction between buttons and links. 

For all functions that are available on the page use 

buttons. For navigation purposes and for linking to 

other pages or anchoring, use links.



34 / 55

Three steps towards accessible RIA

1. Accessibility of RIA components

2. Accessibility of RIA applications

3. Testing of application accessibility



35 / 55

Testing of application 

accessibility

� Developer is typically NOT:

– Blind user

– Used to operate screen reader

� Need for accessibility testing with blind 

users

� Early stages of development means:

– Poor accessibility

– Need for support of accessibility testing



36 / 55

View of blind user

� User sees some components just partially or 

they seem missing

B

A
E

D

C



37 / 55

View of developer

� Developer sees all the components

B

A
E

D

C



38 / 55

View of user with description

B

A
E

D

C

Datepicker (E)

Tablist (A)

Tab 1

Collapsible panel (C)

Panel 1

Tree view (B)

Panel 2

Grid (D) 

Tab 2

Grid



39 / 55

RIA accessibility - summary

� RIA accessibility is 

complicated and complex 

process

– Has to be treated in phases

� Valid testing is 

complicated

– Support of blind tester 

needed 



40 / 55

Simulation and inspection 

tools



41 / 55

Color checkers

� Simulates color blindness and other visual 

impairments

� Web applications

– http://webaim.org/resources/contrastchecker/

– http://www.snook.ca/technical/colour_contrast/col

our.html

� Firefox extensions

– Web Developer

– Color Checker



42 / 55

DIAS: Disability Impairment 

Approximation Tool

� Simulation of impairments

� Inspection of the code

� Integration with IDE (NetBeans)

� http://sourceforge.net/projects/diasnb/



43 / 55

WaaT: Web A11y assessment tool

� Assesses the a11y of web applications

� Integrated with IDE (NetBeans)

� http://sourceforge.net/projects/waat/



44 / 55

MIS tool

� Simulates visual 

impairments

� Simulates mobile 

environment

� https://cent.felk.cvut.

cz/hci/accessible/ind

ex.php?page=mis



45 / 55

Computer vs mobile 

environment

� Computer

– Keyboard,

mouse

– Large LCD monitor

– Steady environment 

(indoors)

� Artificial lightning

� Fixed position

� Planned activity 

� Mobile

– Touch screen, 

HW buttons

– Small display

– Changing environment 

(outdoor)

� Sun, darkness

� Movements

� Frequent unpredictable 

interruption



46 / 55

Simulation of mobile environment in 

office?

� More factors should be taken into account

� Combination of factors also important

� Difficult to simulate in office environment

Hard to imagine

Simulation desired



47 / 55

Mobile Impairment Simulation 

tool

� Filter overlay window

� Independent on mobile platform

– Android

– BlackBerry

– iOS

– Symbian

– Windows 7

– J



48 / 55

Categories of simulated issues

� Visual impairment
– Tunnel vision

– Blurred vision

– Color blindness

� Occlusion of the display
– Finger occlusion

� Reflection on the display
– Static reflections

– Display tremor 

� Combined simulations



49 / 55

Visual impairment

Blurred vision Tunnel vision Color blindness



50 / 55

Occlusion of the display

Real world Simulation



51 / 55

Reflection on the display

Real world Simulation



52 / 55

Development tools 

supporting accessibility



53 / 55

Accessibility Advisor ARIA developer Final applicationsDeveloper

Development process with a11y 

support



54 / 55

Development tools supporting a11y

� AEGIS Accessibility Advisor

– https://cent.felk.cvut.cz/hci/aegis/public/accessibil

ity-advisor/ (experimental version)

� AEGIS Developer tool

– https://cent.felk.cvut.cz/hci/aegis/?page=aadt

� SUCESS ARIA Checker

– https://cent.felk.cvut.cz/hci/coe/?page=aria_check

er



55 / 55

Thank you

Zdeněk Míkovec
Czech Technical University in Prague

xmikovec@fel.cvut.cz


