
WA2
Cvičení 6
Úvod do .NET, ASP.NET, MVC3

Monday, 19 March 12

Test

• TODO: 10+ min

Monday, 19 March 12

.NET Framework
objectives

• provide a consistent OO programming environment
• minimise software deployment and versioning conflicts
• promote safe execution of code, including code created by

an unknown or semi-trusted third party
• eliminate the performance problems of scripted or

interpreted environments
• make the developer experience consistent across widely

varying types of applications, such as Windows-based
applications and Web-based applications
• ensure that code based on the .NET Framework can

integrate with any other code

Monday, 19 March 12

.NET Framework
1.0 2002 initial version

1.1 2003 ASP.NET, ODBC, Compact FW, API changes

2.0 2005
Generics, 64bit, SQL Server integration, Micro FW,

Partial Classes, API changes

3.0 2006
WPF (Presentation), WCF (Communication), WF

(Workflow), Windows CardSpace

3.5 2007
LINQ, ADO.NET Entity FW, ADO.NET Data

Services

4.0 2010 Parallel Extensions, PLINQ

4.5 2012 Metro Style Apps, various core improvements, MEF

Monday, 19 March 12

.NET Languages

• C#, J#, VB.NET, C++/CLI

• A#, Boo, Cobra, Component Pascal,
F#, IronPython, IronRuby, IronLisp,
JScript .NET, L#, Managed JScript,
Nemerle, Oxygene, P#, Phalanger,
Phrogram, Windows PowerShell

http://en.wikipedia.org/wiki/List_of_CLI_languages
Monday, 19 March 12

http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/List_of_CLI_languages

.NET Assembly

• MSIL
• PE file (an .exe or .dll)
• Manifest
• Entry Point
• Boundary (security, type, version)
• Deployment unit
• Static or dynamic.

Monday, 19 March 12

Assembly manifest

• Every assembly (static or dynamic)
• Contains assembly metadata
• Assembly name
• Version number
• Culture
• Strong name information
• List of all files in the assembly
• Type reference information

Monday, 19 March 12

.NET Framework
C#

Monday, 19 March 12

C# .NET

• “main” .NET langauge
• simple, modern, general-purpose, object-

oriented programming language
• mainly influenced by C++ and Java (and Eiffel,

Modula-3, Object Pascal)
• Garbage collection
• strong type checking, array bounds checking

Monday, 19 March 12

http://en.wikipedia.org/wiki/Strong_type
http://en.wikipedia.org/wiki/Strong_type
http://en.wikipedia.org/wiki/Bounds_checking
http://en.wikipedia.org/wiki/Bounds_checking

Task 1

1. Start Visual Studio
2. Create new project (and solution): File → New
→ Project → Visual C# → Console Application

3. Use .NET Framework Class Library to display
current version of CLR. Output: console. (hint:
Environment)

Monday, 19 March 12

Task 2
1. Add reference to provided class library (dll

assembly)
2. Study library contents
3. Using inheritance extend TSP.Algorithm.City

implementation in order to store city names.
4. Use library for TSP (Travelling Salesman

Problem) computation. Discussion: TSP, NP,
NP-complete, Simulated evolution.

5. Report results to console

Monday, 19 March 12

TSP

• NP-Hard
• Non deterministic

Polynomial time -
Hard
• NP-Complete
• Non deterministic

Polynomial time -
Complete

Monday, 19 March 12

Simulated Evolution
Genetic Algorithm

Monday, 19 March 12

Task 3
1. Add new project (name TSPSolverGA). Type:

Class library
2. Reference to provided class library
3. Implement provided interface ITSPSolver
• TSP computation should run in a separate

thread (use code fragments bellow)
4. Implement provided interface ICity interface as

City class, mind namespaces.
• Either extend (inherit) implementation of

TSP.Algorithm.City.
• Or implement the ICity interface from

scratch

Monday, 19 March 12

Task 4
1. Add project WpfTSP to your solution

Reference TSPSolverGA project from previous
task.

2. Reference SolverInterface
3. Complete unfinished methods, use

implementation from previous task.

Monday, 19 March 12

Task 5

1. Add reference to provided class library (dll
assembly) - TSP Algorithm to WPF Project.

2. Use last parameter of ExecutionFinished
respective ProgressReached events and
check whether it is GeneticAlgorithm. If true
display in info label following parameters:
• Best cost
• Count of generations
• Last generation duration

Monday, 19 March 12

Task 6

• Perform performance analysis of your solution
(Debug → Start Performance Analysis)

Monday, 19 March 12

Home work

• Implement a TSP solver that always finds
optimal solution. Use ITSPSolverInterface.
You can either use naive method or for better
solution for extra points (e.g. branches and
bound).

Monday, 19 March 12

