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Test

• TODO: 10+ min
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.NET Framework
objectives

• provide a consistent OO programming environment
• minimise software deployment and versioning conflicts
• promote safe execution of code, including code created by 

an unknown or semi-trusted third party
• eliminate the performance problems of scripted or 

interpreted environments
• make the developer experience consistent across widely 

varying types of applications, such as Windows-based 
applications and Web-based applications
• ensure that code based on the .NET Framework can 

integrate with any other code
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.NET Framework
1.0 2002 initial version

1.1 2003 ASP.NET, ODBC, Compact FW, API changes

2.0 2005
Generics, 64bit, SQL Server integration, Micro FW, 

Partial Classes, API changes

3.0 2006
WPF (Presentation), WCF (Communication), WF 

(Workflow), Windows CardSpace

3.5 2007
LINQ, ADO.NET Entity FW, ADO.NET Data 

Services

4.0 2010 Parallel Extensions, PLINQ

4.5 2012 Metro Style Apps, various core improvements, MEF
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.NET Languages

• C#, J#, VB.NET, C++/CLI

• A#, Boo, Cobra, Component Pascal, 
F#, IronPython, IronRuby, IronLisp, 
JScript .NET, L#, Managed JScript, 
Nemerle, Oxygene, P#, Phalanger, 
Phrogram, Windows PowerShell ....

http://en.wikipedia.org/wiki/List_of_CLI_languages
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.NET Assembly

• MSIL
• PE file (an .exe or .dll)
• Manifest
• Entry Point
• Boundary (security, type, version)
• Deployment unit
• Static or dynamic.
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Assembly manifest

• Every assembly (static or dynamic)
• Contains assembly metadata
• Assembly name
• Version number
• Culture
• Strong name information
• List of all files in the assembly
• Type reference information
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.NET Framework
C#
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C# .NET

• “main” .NET langauge
• simple, modern, general-purpose, object-

oriented programming language
• mainly influenced by C++ and Java (and Eiffel, 

Modula-3, Object Pascal)
• Garbage collection
•  strong type checking, array bounds checking
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Task 1

1. Start Visual Studio
2. Create new project (and solution): File → New 
→ Project → Visual C# → Console Application

3. Use .NET Framework Class Library to display 
current version of CLR. Output: console. (hint: 
Environment)
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Task 2
1. Add reference to provided class library (dll 

assembly) 
2. Study library contents 
3. Using inheritance extend TSP.Algorithm.City 

implementation in order to store city names.
4. Use library for TSP (Travelling Salesman 

Problem) computation. Discussion: TSP, NP, 
NP-complete, Simulated evolution.

5. Report results to console
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TSP

• NP-Hard
• Non deterministic 

Polynomial time - 
Hard
• NP-Complete
• Non deterministic 

Polynomial time - 
Complete
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Simulated Evolution
Genetic Algorithm
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Task 3
1. Add new project (name TSPSolverGA). Type: 

Class library
2. Reference to provided class library 
3. Implement provided interface ITSPSolver 
• TSP computation should run in a separate 

thread (use code fragments bellow)
4. Implement provided interface ICity interface as 

City class, mind namespaces.
• Either extend (inherit) implementation of 

TSP.Algorithm.City.
• Or implement the ICity interface from 

scratch
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Task 4
1. Add project WpfTSP to your solution 

Reference TSPSolverGA project from previous 
task.

2. Reference SolverInterface
3. Complete unfinished methods, use 

implementation from previous task.
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Task 5

1. Add reference to provided class library (dll 
assembly) - TSP Algorithm to WPF Project.

2. Use last parameter of ExecutionFinished 
respective ProgressReached events and 
check whether it is GeneticAlgorithm. If true 
display in info label following parameters:
• Best cost
• Count of generations
• Last generation duration
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Task 6

• Perform performance analysis of your solution 
(Debug → Start Performance Analysis)
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Home work

• Implement a TSP solver that always finds 
optimal solution. Use ITSPSolverInterface. 
You can either use naive method or for better 
solution for extra points (e.g. branches and 
bound).
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