e
e e
++

+

——
- =
+

lec)

KATEDRA POCITACOVE GRAFIKY A INTERAKCE

WA 2

Paxos and distributed programming
Martin Klima

4

+ + + +
+ + + +

+ + + + +

+ + + +

+ + + + +

+ + + + + +

+ + + + +

+ + + + + 4+

+ + + + + +

+ + + + + + +

+ + + + + +

+ + + + + + o+

+ + + + + 4+ + +
+ + + + + 4+ + +
+ + + + + + +

+ + + + + + + +
+ + 4+ + + 4+ + + o+
+ + + + + + + +
+ + + + + 4+ + +
+ + + + + + + + + 0+

+ + + + + + + + + +

+ + 4+ + 4+ 4+ 4+

+ + + + 4+ 4+ o+ 44

+ + + + + + 4+ o+ o+ o+ o+

+ + + + 4+ + + + + 4+

=+

+ + + + + + + + + o+

+ + + + 4+ + + A+ A+ o+

4+ 4+ 4+ 4+ A+ o+ o4 4+ 444w

Spefics of distributed programming

= Communication by message passing
= Considerable time to pass the network
= Non-reliable network

= TiIme Is not synchronized on all nodes
= Consistency cannot be ensured

= Consensus problem

e A - =

Consensus problem

Clients

Client 1 Client 2 Client 2

Consensus
module
x Mashime T MaghirTe

Ny A vAg

< > | State < | State
DFA machine DFA machine
Lo
| [| |

= Any of the machines reacts on external inputs
= They get synchronized

= In the case of failure, any of them can carry on functioning
= Log is propagated to all machines <<<< consensus
= A consensus of the state of the log must be found

s %
> + —+
- WA 2
DCGI 3

Consensus problem

= Replicated databases
= Distributed agents

= We accept when a consensus if found on majority

of nodes

— e.g. not all of them have to be up and running
— we achieve a failure tolerance

SFE %
> + —+
- WA 2
DCGI s

Solution

= Basic Paxos

— One or more servers propose values
— System must agree on just one - the chosen one
— Only one is chosen at a time

= Multi-Paxos

— Combine several instances of Basic Paxos to agree on series of
values from the log

) ++5:: y %
-+ -+
WA 2
DCGI :

Requirements for Basic Paxos

= Only one single value is chosen

= A node never learns that a value has been chosen
unless it really Is

= Some of the proposed values is finally chosen

s If it IS chosen, the nodes will learn about it
eventually

+ ++5I ¥ %
-~ -+ -+
- WA 2
DCGI 6

Roles of nodes In Paxos

= Proposers

— Actively propose values into the log
— Handle client requests

= Acceptors
— Passively respond to proposes
— Vote to reach a consensus
— Store the chosen value (result of voting)

s Listeners

— Want to know which value was chosen
— ...will be joined with Acceptors

—
—_

- ——
= =~ = -
-~ -

DCGI o

A simple approach (does not work)

= There Is a single accepter in the system only

Proposers

= What if the acceptor
crashes after choosing? i

= Solution: a quorum Acceptor

— Multiple acceptors
Chosen

— Value is chosen after being accepted value
by majority of acceptors

— If one of them crashes, it still works well

T %
> + —+
- WA 2
DCGI .

How to reach a quorum?

= Simultaneous acceptance may not lead to a
CONSensus

Q
accept? (X) accepted (X) § -

>
Al --------- - > = = a
n accepted (X) a® o
g A2 T > 22]
Q accept? (Y) accepted (Y) g g -
g8 A3 - - > 28 3
v accepted (Y) 22 q
i A4 e TR S -1
accept? (2) accepted (2) oF 8
A5 """"" " ————————————————————— ‘ """"""""""""" Eii;'i_e“> % ” -

[02]

= Acceptors must sometimes change their mind
— =>» this means that multiple rounds of voting is necessary!!!

s %
> + —+
- WA 2
DCGI :

Another approach — 2 phase protocol

= Acceptors accept every value received
= Can choose multiple values

Chosen
Al ------Qe—F/ O\ >
g A2 - N >
g a cepte} (Y)
S A3 Y > B
v accepted(Y)
i A4 e Q- f - >

We have to chose

Chosen
only one value!

May not accept Y
when X was chosen already

o %
+++++
> + —+
-+ WA 2
DCGI 10

Solution — proposal must be ordered

= Unique number for each proposal

— Higher take priority over lower ones
— A proposal must be able to choose a proposal number higher than

anything used before

= Simple solution

— Each server remembers maxRound it has seen so far

Proposal Number

Round Number Server ID

— To issue a new proposal — increase maxRound, concatenate server

ID

— maxRound must not be forgotten - store it on disk

WA 2
11

feat

Basic Paxos

Two-phase approach:
= Phase 1: broadcast prepare command

= Phase 2: broadcast accept value command
— value is chosen after receiving the majority of positivie accepts

o %
+++++
> + —+
e WA 2
DCGI 12

Acceptors must remember

B as | C P aXxXos minProposal, acceptedProposal, acceptedValue

< £

Proposers Acceptors

Use highest already Promise it will never

1. Choose new proposal number n | accepted value if any, EIBEER ey EE T &
abandon its own one. proposal # less than n

2. Broadcast Prepare(n

3. Respond to Prepare(n)
1
4. After responses from majority If n > minProposal then minPropoal = n
Return (acceptedProposal, acceptedValue)
If any acceptedValue returned, replace
value with gcceptedValuelfor highest

acceptedPraposal

5. Broadcast Accept(n, value)
6. Respond to Accept(n, value)

If n = minProposal then
acceptedProposal = minProposal = n
acceptedValue = value
Return (minProposal)
7. When responses received from
majority

O Any rejections (result > n)? goto 1
Otherwise, value is chosen

——
- - ——
—

DCGI "t

—_
E anliiE o

Basic Paxos Example 1

= Situation when a value has been already accepted

(blue one)
S1, S2, S3
accepted X value S3 will abandon Y
value and will
choose value X

Value si1 R\ ----------------- - >
/4
S2 A P31f{A3aX Hammmec o O >
S3 { P3il}{ A31x/-{Pas }[/aa5x"] ———j Accepted proposal
4.5 with value X

S4 - Nt pas | A45X Jfr---mm------- >
Value S5

S5 proposes Y
value

o %
+++++
> + —+
e WA 2
DCGI 14

Basic Paxos Example 2

= No value chosen yet

S3 will abandon Y
value and will
choose value X

S5 proposes Y
value

WA 2
15

Basic Paxos Example 3

= Later proposal appears

Start again => will S3 promises not to
learn the value Y accept anything
lower than 4.5

Value Si

S2
S3
S4

Chosen 4.5
with value Y

Value S5

S5 proposes Y
value

No previous value
accepted by S3

DCGI et

Basic Paxos livelock possible!!!

= Solution

— randomize restart time
— use a Leader role — leader election

o A o~ == =

” DCGI A

Shortcomings of Basic Paxos

= Communication intensive

— Leader should reduce conflicts
— Aim to eliminate Prepare requests

= Ensure full replication
= Changes in topology

—. Multi Paxos

e A - =

” DCGI e

Improving efficiency

Leader

— Only Leader will propose new values
» Accepts requests from clients
« Acts as proposer and acceptor

— Leader must be Elected
« Simple algorithm = elect leader with the highest ID
* Needs to implement a heartbeat

= If not leader

— Reject client requests (redirect to leader)
— Act only as acceptor

—
—_

- ——
< S o~ =~ —
-~ -

DCGI aot

Improving efficiency - cont

= Reduce # of Prepares
— Remember why we need prepares?
— To block old proposals (promise not to accept an old proposal)
— Find out about possibly chosen values

Happens when
someone else
becomes a leader

= Improvement:
— make the proposal number global
— acceptor will indicate if noMoreAccepted after the cur

— iIf acceptor responds to Prepare with noMoreAccepted, skip future
Prepares with that acceptor (until Accept rejected)

— Once leader receives noMoreAccepted from majority of acceptors,
no need for Prepare

Only 1 round of calls needed per log entry (Accepts)

) ++5I y %
-+ =+
WA 2
DCGI 20

Full Disclosure

= Need to propagate log entries to really all entities, not only
to the majority of them
— full replication

— so far only proposer knows when an entry is chosen
— all servers should know!

= Solution
1. keep retrying Accepts until all acceptors respond
2. track chosen entries

. Mark entries that are known to be chosen: acceptedProposal[i] =

. Each server maintains firstUnchosenlindex, first entry not to be marked as
chosen yet

3. Proposer tells acceptors about the chosen entries

. Include the firstUnchosenindex in Accept calls
. Acceptor marks all entries i as chosen if:

| < request.firstUnchosenindex

- acceptedProposal[i] == request.proposal
> S~ o~ 4~ 4
- =+
DCGI o
21

Result of the improvement so far

Acceptor
1 2 3 4 6 8
0 | 0o | 0o | 25| o | 3.4
1 3 4 6 8
0 | oo | 0 [25]| oo | o 3.4
my acceptance if obsolete,

something else has been chosen
here, now being asked to accept
elsewhere. Mark it as chosen and
wait for the value.

Proposer
Accept(

proposal = 3.4,

index = 8,

value=y,

firstUnchosenIndex = 7
Everything below 7 is chosen,
acceptors may mark positions for
proposal 3.4 as chosen

-+~ -~ -+

WA 2
22

Improvement cont.

Proposer

Accept(
proposal = 3.4,

firstUnchosenIndex = Z

index = 8,
value=y, [:>

Everything below 7 is chosen,
acceptors may mark positions for
proposal 3.4 as chosen

Acceptor

1 2 3 4 5 6 8
0 0 o [25]| o |34

1 3 4 5 6 8
)) 0 | 25| o | o 3.4

my acceptance if obsolete,
something else has been chosen
here, now being asked to accept
elsewhere. Mark it as chosen and
wait for the value.

DCGI

WA 2
23

Full disclosure fina

= The Acceptor may still not have the full log
replicated.

= Solution: it returns to the acceptor his
firstUnchosenindex

= If the Proposer sees, that
proposer.firstUnchosenlindex <

acceptor.firstUnchosenindex then

— proposer sends Success(index, v) message for all indexes missing
— acceptor remembers

« acceptedValue[index] = v

 acceptedProposal[index] = «

* returns firstUnchosenlindex

_ =~ = *_proposer sends additional Success message if needed
+* +
- WA 2
DCGI ya

