
WA 2

Paxos and distributed programming

Martin Klíma

Spefics of distributed programming

 Communication by message passing

 Considerable time to pass the network

 Non-reliable network

 Time is not synchronized on all nodes

 Consistency cannot be ensured

 Consensus problem

Consensus problem

 Any of the machines reacts on external inputs

 They get synchronized

 In the case of failure, any of them can carry on functioning

 Log is propagated to all machines <<<< consensus

 A consensus of the state of the log must be found

WA 2

3

Machine 1 Machine 2 Machine 3

State

machine

State

machine

State

machine

Clients
Client 1 Client 2 Client 2

LogLogLog

C C C

Consensus

module

Consensus problem

 Replicated databases

 Distributed agents

 …

 …

 We accept when a consensus if found on majority

of nodes
– e.g. not all of them have to be up and running

– we achieve a failure tolerance

WA 2

4

Solution

 Basic Paxos
– One or more servers propose values

– System must agree on just one  the chosen one

– Only one is chosen at a time

 Multi-Paxos
– Combine several instances of Basic Paxos to agree on series of

values from the log

WA 2

5

Requirements for Basic Paxos

 Only one single value is chosen

 A node never learns that a value has been chosen

unless it really is

 Some of the proposed values is finally chosen

 If it is chosen, the nodes will learn about it

eventually

WA 2

6

Roles of nodes in Paxos

 Proposers
– Actively propose values into the log

– Handle client requests

 Acceptors
– Passively respond to proposes

– Vote to reach a consensus

– Store the chosen value (result of voting)

 Listeners
– Want to know which value was chosen

– …will be joined with Acceptors

WA 2

7

A simple approach (does not work)

 There is a single accepter in the system only

 What if the acceptor

crashes after choosing?

 Solution: a quorum
– Multiple acceptors

– Value is chosen after being accepted

by majority of acceptors

– If one of them crashes, it still works well

WA 2

8

A B C D

C

Proposers

Acceptor

Proposed

values

Chosen

value

How to reach a quorum?

 Simultaneous acceptance may not lead to a

consensus

 Acceptors must sometimes change their mind
–  this means that multiple rounds of voting is necessary!!!

WA 2

9

F
iv

e
 a

c
c
e
p
to

rs

A1

A2

A3

A4

A5

accept? (X)

accept? (Y)

accept? (Z)

accepted (X)

accepted (X)

accepted (Y)

accepted (Y)

accepted (Z)

time

A
c
c
e
p
te

d
 is

 n
o
t c

h
o
s
e
n
!

V
a
lu

e
 is

 c
h
o
s
e
n
 a

fte
r it is

a
c
c
e
p
te

d
 b

y
 a

 m
a
jo

rity
 o

f n
o
d
e
s

Another approach – 2 phase protocol

 Acceptors accept every value received

 Can choose multiple values

WA 2

10

F
iv

e
 a

c
c
e
p
to

rs

A1

A2

A3

A4

A5

accept? (X)

accepted (Y)

time

accepted (X)

accepted (X)

accepted (X) accepted (Y)

accepted (Y)

accept? (Y)

Chosen

Chosen

?
We have to chose

only one value!

May not accept Y
when X was chosen already

Solution – proposal must be ordered

 Unique number for each proposal
– Higher take priority over lower ones

– A proposal must be able to choose a proposal number higher than

anything used before

 Simple solution
– Each server remembers maxRound it has seen so far

– To issue a new proposal – increase maxRound, concatenate server

ID

– maxRound must not be forgotten  store it on disk

WA 2

11

Round Number Server ID

Proposal Number

Basic Paxos

Two-phase approach:

 Phase 1: broadcast prepare command

 Phase 2: broadcast accept value command
– value is chosen after receiving the majority of positivie accepts

WA 2

12

Basic Paxos

WA 2

13

Proposers Acceptors

1. Choose new proposal number n

2. Broadcast Prepare(n)

3. Respond to Prepare(n)

If n > minProposal then minPropoal = n
Return (acceptedProposal, acceptedValue)

Acceptors must remember
minProposal, acceptedProposal, acceptedValue

4. After responses from majority

If any acceptedValue returned, replace
value with acceptedValue for highest

acceptedProposal

5. Broadcast Accept(n, value)
6. Respond to Accept(n, value)

If n ≥ minProposal then
acceptedProposal = minProposal = n

acceptedValue = value
Return (minProposal)

7. When responses received from
majority

Any rejections (result > n)? goto 1
Otherwise, value is chosen

P
re

p
a
re

 p
h
a
s
e

A
c
c
e
p
t

p
h
a
s
e

Promise it will never

accept any value with a

proposal # less than n

Use highest already

accepted value if any,

abandon its own one.

Basic Paxos Example 1

 Situation when a value has been already accepted

(blue one)

WA 2

14

S1

S2

S3

S4

S5
time

P3.1X

Y P4.5

P3.1

P3.1

A3.1 X

A3.1 X

A3.1 X

P4.5

P4.5 A4.5 X

A4.5 X

A4.5 X

Value

Value

Accepted proposal

4.5 with value X

S3 will abandon Y

value and will

choose value X

S5 proposes Y

value

S1, S2, S3

accepted X value

Basic Paxos Example 2

 No value chosen yet

WA 2

15

S1

S2

S3

S4

S5
time

P3.1X

Y P4.5

P3.1

P3.1

A3.1 X

A3.1 X

A3.1 X

P4.5

P4.5 A4.5 X

A4.5 X

A4.5 X

Value

Value

Chosen value X

S3 will abandon Y

value and will

choose value X

S5 proposes Y

value

Basic Paxos Example 3

 Later proposal appears

WA 2

16

S1

S2

S3

S4

S5
time

P3.1X

Y P4.5

P3.1

P3.1

A3.1 X

A3.1 X

P4.5

P4.5

A4.5 Y

A4.5 Y

Value

Value

Chosen 4.5

with value Y

S3 promises not to

accept anything

lower than 4.5

S5 proposes Y

value

A4.5 YA3.1 X

No previous value

accepted by S3

Start again => will

learn the value Y

P3.1

Basic Paxos livelock possible!!!

 Solution
– randomize restart time

– use a Leader role – leader election

WA 2

17

S1

S2

S3

S4

S5
time

P3.1X

Y

P3.1

P3.1

A3.1 X

A3.5 Y

A3.5 Y

Value

Value P3.5

P3.5

P3.5

A3.1 X

A3.1 X

P4.1

P4.1

P4.1 A3.5 Y

P5.5

P5.5

P5.5

A4.1 X

A4.1 X

A4.1 X

Shortcomings of Basic Paxos

 Communication intensive
– Leader should reduce conflicts

– Aim to eliminate Prepare requests

 Ensure full replication

 Changes in topology

 Multi Paxos

WA 2

18

Improving efficiency

Leader
– Only Leader will propose new values

• Accepts requests from clients

• Acts as proposer and acceptor

– Leader must be Elected

• Simple algorithm = elect leader with the highest ID

• Needs to implement a heartbeat

 If not leader
– Reject client requests (redirect to leader)

– Act only as acceptor

WA 2

19

Improving efficiency - cont

 Reduce # of Prepares
– Remember why we need prepares?

– To block old proposals (promise not to accept an old proposal)

– Find out about possibly chosen values

 Improvement:
– make the proposal number global

– acceptor will indicate if noMoreAccepted after the current one

– if acceptor responds to Prepare with noMoreAccepted, skip future

Prepares with that acceptor (until Accept rejected)

– Once leader receives noMoreAccepted from majority of acceptors,

no need for Prepare

– Only 1 round of calls needed per log entry (Accepts)

WA 2

20

Happens when

someone else

becomes a leader

Full Disclosure

 Need to propagate log entries to really all entities, not only

to the majority of them
– full replication

– so far only proposer knows when an entry is chosen

– all servers should know!

 Solution
1. keep retrying Accepts until all acceptors respond

2. track chosen entries

• Mark entries that are known to be chosen: acceptedProposal[i] = ∞

• Each server maintains firstUnchosenIndex, first entry not to be marked as

chosen yet

3. Proposer tells acceptors about the chosen entries

• Include the firstUnchosenIndex in Accept calls

• Acceptor marks all entries i as chosen if:

i < request.firstUnchosenIndex

acceptedProposal[i] == request.proposal

WA 2

21

Result of the improvement so far

WA 2

22

∞ ∞ ∞ 2.5 ∞ 3.4

1 2 3 4 5 6 7 8 9

AcceptorProposer

Accept(
proposal = 3.4,
index = 8,
value=v,

firstUnchosenIndex = 7
) ∞ ∞ ∞ 2.5 ∞

1 2 3 4 5 6 7 8 9

∞ 3.4

my acceptance if obsolete,

something else has been chosen

here, now being asked to accept

elsewhere. Mark it as chosen and

wait for the value.

Everything below 7 is chosen,

acceptors may mark positions for

proposal 3.4 as chosen

Improvement cont.

WA 2

23

∞ ∞ ∞ 2.5 ∞ 3.4

1 2 3 4 5 6 7 8 9

AcceptorProposer

Accept(
proposal = 3.4,
index = 8,
value=v,

firstUnchosenIndex = 7
) ∞ ∞ ∞ 2.5 ∞

1 2 3 4 5 6 7 8 9

∞ 3.4

my acceptance if obsolete,

something else has been chosen

here, now being asked to accept

elsewhere. Mark it as chosen and

wait for the value.

Everything below 7 is chosen,

acceptors may mark positions for

proposal 3.4 as chosen

Full disclosure final

 The Acceptor may still not have the full log

replicated.

 Solution: it returns to the acceptor his

firstUnchosenIndex

 If the Proposer sees, that

proposer.firstUnchosenIndex <

acceptor.firstUnchosenIndex then
– proposer sends Success(index, v) message for all indexes missing

– acceptor remembers

• acceptedValue[index] = v

• acceptedProposal[index] = ∞

• returns firstUnchosenIndex

• proposer sends additional Success message if needed

WA 2

24

