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Spefics of distributed programming

 Communication by message passing

 Considerable time to pass the network

 Non-reliable network

 Time is not synchronized on all nodes

 Consistency cannot be ensured

 Consensus problem



Consensus problem

 Any of the machines reacts on external inputs

 They get synchronized

 In the case of failure, any of them can carry on functioning

 Log is propagated to all machines <<<< consensus

 A consensus of the state of the log must be found
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Consensus problem

 Replicated databases

 Distributed agents

 …

 …

 We accept when a consensus if found on majority 

of nodes
– e.g. not all of them have to be up and running

– we achieve a failure tolerance
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Solution

 Basic Paxos
– One or more servers propose values

– System must agree on just one  the chosen one

– Only one is chosen at a time

 Multi-Paxos
– Combine several instances of Basic Paxos to agree on series of 

values from the log

WA 2

5



Requirements for Basic Paxos

 Only one single value is chosen

 A node never learns that a value has been chosen 

unless it really is

 Some of the proposed values is finally chosen

 If it is chosen, the nodes will learn about it 

eventually
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Roles of nodes in Paxos

 Proposers
– Actively propose values into the log

– Handle client requests

 Acceptors
– Passively respond to proposes

– Vote to reach a consensus

– Store the chosen value (result of voting)

 Listeners
– Want to know which value was chosen

– …will be joined with Acceptors
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A simple approach (does not work)

 There is a single accepter in the system only

 What if the acceptor

crashes after choosing?

 Solution: a quorum
– Multiple acceptors

– Value is chosen after being accepted

by majority of acceptors

– If one of them crashes, it still works well
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How to reach a quorum?

 Simultaneous acceptance may not lead to a 

consensus

 Acceptors must sometimes change their mind
–  this means that multiple rounds of voting is necessary!!!
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Another approach – 2 phase protocol

 Acceptors accept every value received

 Can choose multiple values
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Solution – proposal must be ordered

 Unique number for each proposal
– Higher take priority over lower ones

– A proposal must be able to choose a proposal number higher than 

anything used before

 Simple solution
– Each server remembers maxRound it has seen so far

– To issue a new proposal – increase maxRound, concatenate server 

ID

– maxRound must not be forgotten  store it on disk
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Basic Paxos

Two-phase approach:

 Phase 1: broadcast prepare command

 Phase 2: broadcast accept value command
– value is chosen after receiving the majority of positivie accepts
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Basic Paxos
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Basic Paxos Example 1 

 Situation when a value has been already accepted 

(blue one)
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Basic Paxos Example 2

 No value chosen yet
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Basic Paxos Example 3

 Later proposal appears
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Basic Paxos livelock possible!!!

 Solution
– randomize restart time

– use a Leader role – leader election  
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Shortcomings of Basic Paxos

 Communication intensive
– Leader should reduce conflicts

– Aim to eliminate Prepare requests

 Ensure full replication

 Changes in topology

 Multi Paxos
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Improving efficiency

Leader 
– Only Leader will propose new values

• Accepts requests from clients

• Acts as proposer and acceptor

– Leader must be Elected

• Simple algorithm = elect leader with the highest ID

• Needs to implement a heartbeat

 If not leader
– Reject client requests (redirect to leader)

– Act only as acceptor
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Improving efficiency - cont

 Reduce # of Prepares
– Remember why we need prepares?

– To block old proposals (promise not to accept an old proposal)

– Find out about possibly chosen values

 Improvement:
– make the proposal number global

– acceptor will indicate if noMoreAccepted after the current one

– if acceptor responds to Prepare with noMoreAccepted, skip future 

Prepares with that acceptor (until Accept rejected)

– Once leader receives noMoreAccepted from majority of acceptors, 

no need for Prepare

– Only 1 round of calls needed per log entry (Accepts)
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Full Disclosure

 Need to propagate log entries to really all entities, not only 

to the majority of them
– full replication

– so far only proposer knows when an entry is chosen

– all servers should know!

 Solution
1. keep retrying Accepts until all acceptors respond

2. track chosen entries

• Mark entries that are known to be chosen: acceptedProposal[i] = ∞

• Each server maintains firstUnchosenIndex, first entry not to be marked as 

chosen yet

3. Proposer tells acceptors about the chosen entries

• Include the firstUnchosenIndex in Accept calls

• Acceptor marks all entries i as chosen if:

i < request.firstUnchosenIndex

acceptedProposal[i] == request.proposal
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Result of the improvement so far
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Improvement cont.
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Full disclosure final

 The Acceptor may still not have the full log 

replicated.

 Solution: it returns to the acceptor his 

firstUnchosenIndex

 If the Proposer sees, that 

proposer.firstUnchosenIndex < 

acceptor.firstUnchosenIndex then
– proposer sends Success(index, v) message for all indexes missing

– acceptor remembers 

• acceptedValue[index] = v

• acceptedProposal[index] = ∞

• returns firstUnchosenIndex

• proposer sends additional Success message if needed
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