
Not Only SQL

databases

Tomas Barina

Database history 1/2

"A database system is a way of organizing

information on a computer, implemented by a

set of computer programs."

Dr. Codd introduced relational model,

normalization and SEQEL language

Database history 2/2

• Larry Ellison based on Codd's paper started

Relational Software Inc. (1977) today Oracle

• Many others have inspired from Codd =>

Informix, MySQL, PostgreSQL, etc..

• RDBMS are still the most widely used

database systems

Transactions

• Set of operation treated as atomic

• ACID
o Atomicity - All operations are executed at once or

rolled back

o Consistency - System can switch only between

legal states

o Isolation - Others do not see modified data until

they are committed

o Durability - Data is persisted even in case of hw/sw

crash

End of "one size fits all" era

img source: http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg

http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg
http://morganlinton.com/wp-content/uploads/2010/08/one-size-fits-all.jpg

What are today's requirements?

• Large volume of data (Informational explosion)

o In 2011 ~1 800 exabytes of data created

o World information is doubling every 2 years

• Dynamic adoption of changes

o ALTER on big table is issue

• Strong parallelism

• Minimal downtime (SLAs)

• Low latency

• Low price - e.g. commodity hardware

• Streaming data

• Analytics

•

(c) IBM

Big Data era

img src: http://hortonworks.com/wp-content/uploads/2012/05/bigdata_diagram.png

http://hortonworks.com/wp-content/uploads/2012/05/bigdata_diagram.png
http://hortonworks.com/wp-content/uploads/2012/05/bigdata_diagram.png
http://hortonworks.com/wp-content/uploads/2012/05/bigdata_diagram.png

How to satisfy these requirements?

• Many CPUs, memory

• But hard to fit to one node (even rack)

• Even SANs are expensive

Solution:

Split data and computation across servers

(horizontal scaling)

Try different DB architecture

Oracle RAC? - Superb but not for

everything

• Add CPUs and memory to one server

• Add servers for failover or balancing (but

limited number and non-linear scaling)

• Oracle RAC:

NoSQL

"Let's relax from some RDBMS features"

NoSQL = Not only SQL

• Different storage architecture

• Schemaless

• Relax JOINs

• Eventual consistency

• Elasticity

• Cheap hardware (Usually simplified)

Types of databases

(c) www.infoq.com

NoSQL taxonomy (1/2)

Key / Value

• Distributed Hash Table

Document database

• Semistructured, stores JSON/XML.

Graph database

• From graph theory. Stores vertices, edges,

attributes.

NoSQL taxonomy (2/2)

Column store

• One key have

multiple columns.

Store similar

column values

nearby.

http://www.fredberinger.com/musings-on-nosql/

http://www.fredberinger.com/musings-on-nosql/
http://www.fredberinger.com/musings-on-nosql/
http://www.fredberinger.com/musings-on-nosql/
http://www.fredberinger.com/musings-on-nosql/
http://www.fredberinger.com/musings-on-nosql/
http://www.fredberinger.com/musings-on-nosql/

Architecture point of view

• Hybrid architecture might be suitable
o "One size fits all"? ->Use right tool for right use case

• RDBMs for metadata and transactional

processing
o Even Twitter/Facebook still use MySQL for "small datasets".

 Twitter for datasets < 1.5 TB

o e.g. Constrained tree schema

 Most DB schemas have tree structure

• Store only data near root in RDBMS

• NoSQL for semistructured/unstructured/graph

data

• Analytical for batch processing (patterns)

KeyValue - Memory cache

• Distributed non-persistance key/value with

high performance (Distributed HashTable)

• Use cache to decrease load of DB (or any

other expensive resource)

• Can help with consistency

• Can specify expiration or put/delete listeners

KeyValue - Redis

• REmote DIctionary Service

• Master->Slave (async)
o Resends all modif commands to slaves

• It is often referred to as a data structure

server since keys can contain strings,

hashes, lists, sets and sorted sets.

• To use as a cachemaxmemory-policy allkeys-lru

• Jedis Java API - so simple
Jedis j = new Jedis("localhost",6379);

j.set("name", "JohnDoe");

j.get("name");

http://redis.io/topics/data-types
http://redis.io/topics/data-types
http://redis.io/topics/data-types
http://redis.io/topics/data-types
http://redis.io/topics/data-types

Redis

• Data must fit to memory

• Write-write consistency guaranteed,write-

read consistency eventual

• Always take care of our use case!
o Show latest items in home page

o Counters (number of access from IP)

o Publish/Subsribe (keep map of requestors + SUBSCRIBE

command)

o Queues

o Unique sets

o Time-outing data

o Cache, Transactions, Pipelining

Column family - BigTable

• Distributed multi-dimensional sorted map

• Fault tolerant

• Self managing

• Providing elasticity

• Use GFS for data storage

BigTable - Data model

(row: string, column: string, time: int64) -> string

• Lexicographical order by row key

• Nulls are skipped

• Easy to store 1:N (multivalue)

• Versioning of values with garbage collection

• Data stored in tablet (chunk of data+metadata)

• Column family

- What columns should be stored nearby

GFS - Google File System

• PBs of data

• Master for medatada (can have hot stand by)

• Chunkserver for data (usually 64MB chunks)

• Write once read many times, heartbeat, replication

KeyValue/Document Riak

• Opensource written in Erlang

• No Master - All nodes equal

• Limited MapReduce

• Linear scalability

• Automatic recovery from node fail

• Fully distributed
o Elasticity

• Fulltext
o Solr, Lucene

Consistent Hashing - SHA1

http://1.bp.blogspot.com/_j6mB7TMmJJY/SwohQZ9HTAI/AAAAAAAAAXM/X9CAGfpnL2o/s1600/p1.png

http://1.bp.blogspot.com/_j6mB7TMmJJY/SwohQZ9HTAI/AAAAAAAAAXM/X9CAGfpnL2o/s1600/p1.png
http://1.bp.blogspot.com/_j6mB7TMmJJY/SwohQZ9HTAI/AAAAAAAAAXM/X9CAGfpnL2o/s1600/p1.png

Quorum

• N = replication factor

• W nodes must respond before considered successful

• N/2 + 1 optimal

Riak - node failure

• Hinted handoff

o neighboring node takes control over storage

o After node recovery, data transferred to recovered

node

• Read repair

o When using quorum, if one node returns old data

(using vector clock) of missing it will be repaired

 This is done within clients query

Document Database - MongoDB

• Opensource in C++

• Document DB

o JSON/BSON documents

• Master/Slave with dynamic voting

• Supports replication and sharding

• Support index

o Distributes it's across shard

Document Database - MongoDB

• Replica Set

o Have one master serving all requests

o In case of master failure new master is voted (the

freshest)

• Sharding

o Divide data and store them on different nodes

(replica sets)

o Data accessed together can be stored nearby

o Can store data on right geographic location

MongoDB - Architecture

Graph DB - Neo4j

• Most generic structure

• Easy graph traversal
o Good for queries: "Whom you might know"

o Multiple traversals

o much faster than JOIN

• Master/Slave

• ACID

• Bult-in algorithms
o Dijkstra, A*, shortest paths,all paths, ...

• Cypher - declarative language

Cypher

Hadoop - Analytical

• Open source Apache project

• Provides elasticity - scale from one to thousands nodes

• Based on Hadoop Distributed Filesystem

o HDFS is open source implementation of GFS

• Map/Reduce framework

• Large scale database with simple programming model

Hadoop vs RDBMS

RDBMS Hadoop

Data sources Structured with schema (Un)structured

Data type Records,objects, XML Files

Language SQL & XQuery Pig, Hive, Jaql

Processing type Quick resp., rand. access Batch processing

Data integrity Data loss is not acceptable Data loss can happen sometime

History ~40 years of innovations < 5 years old

Map/Reduce

• Software framework for writing applications

processing TBs+ datasets in parallel

• In reliable and fault tolerant manner
o Use commodity hardware

• Forget taking care about:
o parallel, semaphores, (dead) locks

Map & Reduce

• Map(k1,v1) → list(k2,v2)

• Reduce(k2, list (v2)) → list(v3)

function map(String name, String document):

 // name: document name

 // document: document contents

 for each word w in document:

 emit (w, 1)

 function reduce(String word, Iterator partialCounts):

 // word: a word

 // partialCounts: a list of aggregated partial counts

 sum = 0

 for each pc in partialCounts:

 sum += pc

 emit (word, sum)

Map & Reduce

Pig

• Goal: Reduce program size and complexity

• Data flow language

• Sample:
input = LOAD ‘./all_web_pages’ AS (line:chararray);

words = FOREACH input GENERATE FLATTEN(TOKENIZE(line)) AS word;

word_groups = GROUP words BY word;

word_count = FOREACH word_groups GENERATE COUNT(words) AS count, group;

ordered_word_count = ORDER word_count BY count DESC;

STORE ordered_word_count INTO ‘./word_count_result’;

(c) IBM

Hive

• Declarative

• Sample:
CREATE TABLE movie_ratings

(userid INT,movieid INT,rating INT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

(c) IBM

Use case

• IBM Jeopardy (Get answer to question before

others)

• Use Hadoop to load large number of data and

find the answer

• 200M pages

loaded to

memory

Use case - Facebook mail system

• HBase with HDFS (open source GFS)

o High write throughput

o Good random read performance

o Small messages and metadata

o Search index

• Stats:
o 8B+ messages/day

o Peak 1.5M ops/s (55% read, 46 write)

o +250TB/month

• Two schema changes while in production

