PaaS

A Lecture for A4M39WA2

Ing. Tomáš Vondra

Cloud Computing

- A new form of IT outsourcing
 - Replaces server rental, webhosting, managed applications
 - Correspoding layers: IaaS, PaaS, SaaS
- Brings new features
 - Elasticity, automation, infinite scale
 - Pay per use, accounting
 - Self service, web services integration
- Three layers:

laaS

- Computing infrastructure offered on the web
 - CPU power, memory, storage, network
- Enabling technology Virtualization
 - Flexible allocation and sharing of servers
 - Separation of customers = multitenancy
 - -> granularity one VM instance and hour
- Different usage model from raw virtualization
 - Multiple VMs from one read-only image
 - Agile infrastructure 1 server, multiple purposes

PaaS

- Public solution stacks for web applications
 - OS, web server, language interpreters, provisions for automatic scaling, all shielded from the user
- Each system only has a few supported languages
 - Automatic deployment and scaling not trivial
- Offers development tools
 - Libraries for specific services
 - IDE plugins, deployment tools
- Two types Instance PaaS, Framework PaaS

SaaS

- A new form of application delivery
- Global availability web application, user data
- Multitenancy users use the same installation
- Licensing ideally pay per use
 - When monthly payment, it should be elastic
- Third layer of cloud doesn't imply use of underlying layers, but elastic infrastructure is advisable
 - <- No control over the number of users

PaaS properties

- Gives the programmer a solution stack
 - Web server, database engine, scripting language
- Simple deployment, no worries about servers, storage, network, scaling, updates, ...
- Guarantees multitenancy for better security
- Users isolated by virtualization or OS means
- Accounting and billing of used resources
 - Different at every vendor
- Development tools

Comparison with laaS

- IaaS better for migrating existing applications
 - More flexible, you install your environment
- PaaS has lower demands on administration
- PaaS will take care of scaling if applications use correct frameworks, also redundancy and CDN
- -> PaaS better for new applications
- BUT has dangers of vendor lock in if platform specific functions are used
 - IaaS instance can be copied to your server.

Comparison with Webhosting

- Webhosting essentially does the same offers a platform for web sites / applications
- Minus scalability, multitenancy, accounting
- Plus personal contact negotiation, support
- Different languages, cloud focuses on scalability
 - Hosting: PHP, ASP, some Perl and Python
 - Cloud: Java, Ruby, PHP (due to demand), Node.js
- Added value e-mail and domain hosting
 - vs. development tools and web services in PaaS

PaaS types

- Instance PaaS
 - Depends on IaaS layer for multitenancy
 - Better security and performance guarantees
 - Deploys applications to IaaS instances
- Framework PaaS
 - Uses OS capabilities for multitenancy
 - Better resource utilization and accounting granularity
 - Requires specific frameworks to be used
 - Can benefit from cloud infrastructure, but is not dependent on it
- Metadata PaaS
 - Client configures his service through metadata

Available systems (selected)

- Instance PaaS
 - Amazon Elastic Beanstalk
 - Microsoft Azure
- Framework PaaS
 - Google App Engine
 - VMware Cloud Foundry

Google App Engine

- Since Apr. 2008, commercial in Sep. 2011
- Languages (in order) Python, Java, Go
- Typical Framework PaaS
 - Multitenancy by limiting system library functions
 - No filesystem writes and network sockets
 - Must use specific database and network services
 - High vendor lock-in potential (ex. emulation projects)
 - Quotas needed to support massive multitenancy
 - Daily quotas billing, fair use
 - Per minute quotas spike prevention

Architecture of Google App Engine

GAE - Quotas

- Basic quota enough for development
 - 6,5 h CPU time per day (granularity 15 min)
 - 1 GB datastore, 5 GB blobstore, 1 GB network traf.
- If billing enabled, minor service quotas raised
 - \$0.08 CPU hour 600 MHz (of what?), larger inst.
 - \$0.12 1 GB net traffic
 - \$0.24 datastore, \$0.13 blobstore, \$0.1 100k writes
- If exceeded
 - Main quotas: user gets HTTP 403
 - Service quotas: OverQuotaError exception

GAE - Services

- Data storage based on Google File System
 - Over it BigTable noSQL database engine
 - Providing Datastore and Blobstore APIs (GQL lang.)
 - For Java JDO and JPA compatibility layers
 - Problem not SQL: no indexes, no joins –> very limited
 - Datastore Master-Slave or High Replication
- Google Accounts, HTTP fetch, e-mail send, XMPP, Memcache, image manip. and others
- Client libraries for all APIs in Eclipse plugin

GAE - Limitations

- No state information between HTTP requests
 - All sessions etc. in datastore
 - Good for instance unloading and scalability
- Event style programming, 30 s per request
 - Single-threaded instances by default!
 - Task queues (60s tasks) and backend instances
- Specific programming style
 - Practically impossible to deploy existing apps.
 - Vendor lock-in

Amazon Elastic Beanstalk

- Since beginning of 2011, still Beta
- Currently only Java, should be extensible
 - Java interpreters jRuby, Quercus, ...
- Amazon major IaaS provider -> Instance PaaS
- Other PaaSs on Amazon: Heroku, AppFog, ...
- Multitenancy by virtualization
 - Each user gets his own VM instances
 - Some services shared, some need more instances
 - Minimal limitations can migrate to IaaS

Beanstalk - Pricing

- Free only a management tool for other services
 - Prepares images with solution stacks, w/upgrades
- Deploys images on EC2 instances:
 - m1.small \$0.085 (1,7 GB RAM, 1 ECU)
 - t1.micro \$0.02 (613 MB, 10% of 2 ECU)
- Uses Elastic Load Balancer:
 - \$0.025 / 1 hour, \$0.008 / 1 GB
- Applications and logs are on S3:
 - \$0.14 / 1 GB and month
- Uses Elastic Autoscaler, which needs CloudWatch
 - \$3.5 per instance and month
- Data transfers outbound from cloud
 - \$0.12 / 1 GB basic price, degressive for larger volumes

Beanstalk - Services

- The service itself has no database, Amazon has:
- Database VM instances
 - per hour licensing for IBM DB2 and Informix, Oracle, MS SQL,
 Sybase, Postgres Plus, normal instance price for free DBs
- RDS automatically managed MySQL and Oracle
 - does updates, backups, scaling, HA between av. zones
 - Paid per hour, \$0.11, 2x in hot-standby, \$0.1 / 1 GB
- Non-relational databases with variable row format & sharding
 - SimpleDB \$0.25 / 1 GB, \$0.14 / machine hour (shared)
 - · Max size 10 GB, automatic indexing, website use, 1 GB & 25 h free
 - DynamoDB \$1 / 1 GB, \$0.01 for 50 kB/s (granularity 1h)
 - On SSD storage, guaranteed IOPS, for data mining
- Other services: MapReduce, ElastiCache, Route 53, e-mail sending, Simple Queue Service, Simple Notification Service

Beanstalk - Limitations

- Minimal.
 - Applications are deployed to standard application servers (currently Apache Tomcat)
 - Standard relational databases available
 - Can disable the service and continue as IaaS only
- Local storage is ephemeral, design for scalability
- High price ~ \$40 for minimal conf. + database
- Eclipse plugin provided, API and CLI tools

Microsoft Azure

- Since Oct. 2008, commercial in Feb. 2010
- Languages: ASP.NET, PHP, Node.js, Java
- Internally Instance PaaS, VM Role only recently
 - Web Role runs IIS server on W2k8 and Hyper-V
 - Application is a web server root directory
 - Woker Role no IIS
 - Application is a package with EXE file
 - · For services outside IIS, ie. Java, Node.js
 - VM Role runs your VHD images of W2k8
 - Essentially IaaS

Azure - Pricing

- Instance PaaS accounting by instance hours
- 5 instance types, prices exactly as Amazon + Win
 - Small: 1 CPU, 1,75 GB RAM, 230 GB disk, \$0.12
 - ExtraSmall, 768GB RAM, 20 GB disk, \$0.04
- Possible to buy discount packages
 - Like Amazon's Reserved Instances
- Interesting SLA 99.95% only if you have 2 inst.
 - Automatic updates need reboot :-P

Azure - Services

- noSQL storage
 - Tables variable row format, max. 255 attributes, manual sharding - "partition key"
 - Blobs for storing large objects
 - Block blobs: 4 MB blocks, addressable individually or as a whole, max. size 200 GB, may use CDN
 - Page blobs: 512 B pages, sparse writes, snapshots
 - Azure Drives: page blobs containing VHD images
 - Queues: 8 kB XML messages for IPC
 - Counted together at \$0.14 / 1 GB and \$0.01 / 10k I/Os
- SQL Azure modified MS SQL Server with clustering
 - Un-cloudlike flat fees, minimum \$5 for max. 100 MB
- AppFabric Access Control, SOA bus; Connect (VPN), Market (apps and datasets), Caching, MPI

Azure - Limitations

- MS technologies.
 - Windows command line, T-SQL language,
 Caching is not memcached, MPI is not OpenMPI
 - Some may view it as an advantage
- A cloud classic local storage is ephemeral
- No e-mail sending service
- Deployment requires writing an XML descriptor
 - Also needed for scaling no built-in automation
- Prices higher than Amazon need 2 instances
- Plugins for MS Visual Studio and Eclipse

Cloud Foundry

- Since beginning of 2011, still beta
- The only open source PaaS to date
 - There will be multiple providers, private clouds
- Supports Spring for Java, Ruby on Rails (and Sinatra), node.js, Grails and Scala on Lift
 - Typical Framework PaaS
 - · Unlike Google, uses standard frameworks
 - More added by companies and community
 - PHP, Django on Python, Erlang
- Three versions: cloudfoundry.com, private, micro (in a VMware Player image)

Cloudfoundry.com

- Public version is free in beta
- Limits:
 - 2 GB total memory per user
 - Apps can have from 64 MB to 2 GB per instance
 - Maximum 20 applications
 - 128 MB data in MySQL
 - 16 MB Redis, 240 MB MongoDB
- Which sums up the services, except RabbitMQ
 - More may be added later

CloudFoundry - Structure

- Droplet Execution Agent
- Router
- Cloud Controller
- Health Manager
- NATS message bus

Cloud Foundry - Limitations

- Not significant if programmer adheres to framework's design patterns
 - For Java contains Tomcat application server
- Low Security only standard UNIX user/group
 - A local exploit will compromise the DEA, exposing other users' apps and data
 - Nimbula IaaS launches a whole CF for each user
 - ActiveState Stackato a derivative using LXC
 - (Iron Foundry a derivative running .NET)
- Scaling is manual, local storage ephemeral
- Eclipse plugin available, "vmc" CLI tool