
WA 2
1

Introduction to clouds

Martin Klíma

WA 2
2

Cloud computing what it is

 New form of IT outsourcing

– Replacement for server rental, webhosting, managed
applications

– Pay per use, well defined accounting

– Self service

– Horizontal and vertical scalability
(vertical through virtualization)

WA 2
3

When do we want it?

 Public vs private cloud

 On premise – I have it all under my own roof

 Why not to have it on premise?

– Licenses

– Capacity designed for the worst scale

– IT staff designed for 24 / 7 / 365

 Why not cloud

– Data out of the company

– Simple app may be costly

WA 2
4

Where is the advantage?

 Try and leave

 Do not worry to scale

 Scale on demand

 Available anywhere

– My business is getting worldwide

WA 2
5

Scenarios

WA 2
6

Scenarios cont

WA 2
7

Scenarios cont

WA 2
8

Types of cloud

 IaaS = Infrastructure as a Service

– Rack Space

– Amazon AWS

 PaaS = Platform as a Service

– Google app engine

– Microsoft Azure

 Software as a Service = SaaS

WA 2
9

Cloud vs on premise

On presmise

Cloud

Hybrid

WA 2
10

Uptime and SLA

 SLA = Service Level Agreement

– 99.9%, 99.99%, 99.999%

 IT Disaster recovery – 2-4% of budget

 Secondary recovery center

 RPO = Recovery Point Objective – maximum period of time
for which data can be lost >>> zero

 RTO = Recovery Time Objective – maximum amount of
time that my business can sustain without the data

WA 2
11

Virtualization

Virtualization is a very effective method for resource
utilization.

WA 2
12

Google App Engine - GAE

WA 2
13

Google App Engine

 Google – well known 

 Large datacenters

 Sells computing power that it does not
need for itself

 The initial design of the datacenter
is web analysis, harvesting, indexing, searching

WA 2
14

Core google functions

 Googlebot, crowlers

– Visit a web page, download it

– Google download a vast majority of visible web

– Search for new resources automatically

– A new resource can be added manually

– Sophisticated logic to discover cheating
• Hidden text

• Meta data

• Different content for bots and other users

– Various policies for vising
• How often to come back and download?

– How to match the same pages on different servers?

WA 2
15

Core Google functions

 Google Indexer

– Builds an index of existing words and urls of pages

– Some words are not indexed (conjunctions,
prepositions, …)

 Google Query Processor

– Uses PageRank of pages
• The more URLs pointing to the page, the higher PageRank

• The more trusted page points, the higher PageRank

• PageRank considers about 100 other aspects of a page

• Google keeps them secret

– Use of spelling corrector

– Prefers terms that are physically near to each other

WA 2
16

Core Google functions

 Google Doc Servers

– Stores the data itself

– HUGE amount of data

– Caching of history of internet

WA 2
17

Google App Engine

Offers the basic infrastructure

– Scalability
• To scale up/down resources when needed

– Reliablity
• Capability to survive failure, recovery

WA 2
18

Infrastructure

Front End

Front End

Front End

…

App Master

App Server

App Server

…

Data Store

Memchache

Static Files

Images Users

Task QueueURL Fetch

App Server

WA 2
19

Best practice

 Non-Relational DB BigTable

 App design

– Fast request handling

– Low resource utilization

– Fyzical HW independence

WA 2
20

Google Front End

ISP

Data Center #1

Edge Cache

Google Front End

GFE is physically close
to the user

Data Center #2

App Master

Static Servers

App Engine
Front End

App Servers

Application
Instances

„Optics“

Load

Balancing

WA 2
21

Using Edge Cache

1. HTTP headers

…it is in fact a HTTP cache 

2. Define content as static

class MyHandler (webapp.RequestHandler):
def get(self):

self.response.headers.add_header(
‘cache-control’,
‘public, max-age=‘7200’) #2 hodiny

…
<static>
<include path=“/**.png” />
<exclude path=“/data/**.png” />
</static>

appegnine-web.xml

WA 2
22

App Server

ISP

Data Center #1

Edge Cache

Google Front End

GFE is physically close
to the user

Data Center #2

App Master

Static Servers

App Engine
Front End

App Servers

Application
Instances

Optics

Load

Balancing

WA 2
23

App Server

 Application running environment

– Sandbox

– Dedicated memory

– Container controls the app live cycle

– App does not see out of container

 App master

– Monitors how apps run

– Scales them up/down

– Makes instance visible to each other

WA 2
24

App Server – types of instances

 Front End instance

– Good for fast request serving

– Max lifetime 60 sec

– Typical for web application

– Stateless, easy to scale

 Back End instance

– Good for larger computing tasks

– Stateful

– Batch data processing, not time limitted

– Costly, difficult to scale

 Communication

– Queues

Careful with big

libraries

WA 2
25

App Server – Scaling

 Scaling front end instances
Request
queues

Pending Latency

Idle Instances

WA 2
26

App Engine parameters

 Pending Latancy

– Time a request spends in a queue

– Over a given threshold a new front end instance is
created

– The longer PL, the worse the response time

– The shorter PL, the more expensive 

 Iddle Instances

– How many instance do we keep when there is no
utilization

– Stand-by readiness

WA 2
27

WA 2

Google High Replication Data Store

Martin Klíma

Zdroj: http://www.youtube.com/watch?v=xO015C3R6dw

WA 2
28

The main data storages in GAE

 Master/Slave

– One master node

– Number of slaves replicating the content o master

 High replication

– No central/control node

– All instances are equal

WA 2
29

Datastore Software Stack

 App Engine Datastore

– Schema-less storate

– Advanced query engine

 Megastore

– Multi-row transactions
• Across multiple machines

• Entity Groups

– Simple indexes/queries

– Strict schema

 Bigtable

– Distributed key/value store

 Next generation distributed file system

GFS v2

Bigtable

Megastore

Datastore

WA 2
30

Entitity Group

 Logical grouping of entities

– Parent/child key relationship

 Unit of Transactionality

– Transactions can only read/write entities in a single grup

 Unit of consistency

– Strong serial consistency

What you write you will always get.

No partial success of transaction

WA 2
31

Entity groups

 Transaction on one entity group are guaranteed

 Transaction across entity groups are not quaranteed

Entity Group A Entity Group B

Transaction OK
Transaction OK

Transaction NOT OK

WA 2
32

Entity group example

UsersUsersUser

UsersUsersPhoto

UsersUsersComment

UsersUsersDocument

UsersUsersRevision History
UsersUsersComment

UsersUsersBlog Post

UsersUsersComment

WA 2
33

Entity group example

UsersUsersUser

UsersUsersPhoto

UsersUsersComment

UsersUsersDocument

UsersUsersRevision History
UsersUsersComment

UsersUsersBlog Post

UsersUsersComment

SELECT * FROM Comment WHERE UserId = user.id()

NON-Ancestor
Query

WA 2
34

Entity group example

UsersUsersUser

UsersUsersPhoto

UsersUsersComment

UsersUsersDocument
UsersUsersRevision History

UsersUsersComment

UsersUsersBlog Post

UsersUsersComment

SELECT * FROM Comment WHERE ancestor IS user.key()

Ancestor
Query

WA 2
35

Master/Slave write/read model

Master DB Slave DB

My Application

Write Read

1 2

Asynchronous replication
at some later time

Datacenter A Datacenter B

My Application can
see all its writes
because they were

made to its Master
DB

WA 2
36

High Replication engine

 Write

– Write to at least majority of nodes

– Minority may not get writes synchronously

– Asynchronous replication

– On demand replication

 Read

– Read from fastest (mostly local)

– Catch up on demand

WA 2
37

High replication read model

Master DB Slave DB

My Application

Write Read

1

Datacenter A Datacenter B

Slave DB

Datacenter C

1 1

WA 2
38

High replication read model

Master DB Slave DB

My Application

Write Read

2

Datacenter A Datacenter B

Slave DB

Datacenter C

2 2
Usually the

fastest

WA 2
39

High replication write model

Master DB Slave DB

My Application

Write Read

1

Datacenter A Datacenter B

Slave DB

Datacenter C

1 1

WA 2
40

High replication write model

Master DB Slave DB

My Application

Write Read

2

Datacenter A Datacenter B

Slave DB

Datacenter C

2 2

WA 2
41

High replication

 There is no guarantee that a given database has all the
written data at a given time.

WA 2
42

Datastore performance

Master/Slave High Replication

Average Latency Read 15 ms 15 ms

Write 20 ms 45 ms

Average Error Rate Read 0.1% 0.001%

Write 0.1% 0.001%

8.7 hours/year 5 minutes/year

SLA !!!

WA 2
43

Maintenance

 Master/Slave

– Switch master
• One hour of read-only datastore

WA 2
44

Master/Slave maintenance

Master DB Slave DB

My Application

Write Read

1

Step 2
Flush all

Datacenter A Datacenter BStep 1: Read Only

WA 2
45

Master/Slave maintenance

Maintenance Master DB

3

Datacenter A Datacenter B

My Application

Write Read

4

Asynchronous replication
at some later time

WA 2
46

High replication

 Almost not affected by maintenance time

 Memcache flush (1 minute)

