1 Lecture

1.1 Syntax

$$
\begin{align*}
\text { Expr }::= & X \mid \\
& \lambda X . E x p r \mid \tag{1}\\
& \text { Expr Expr },
\end{align*}
$$

where X is a predefined set of variable names.

1.2 Operational Semantics

$$
(\lambda X . E) F \rightarrow E[X \mapsto F] \quad \text { (beta-reduction) }
$$

Two expressions are beta-convertible $\left(=_{\beta}\right) \equiv$ they can be reduced to the same expression.

1.3 Auxiliaries

$$
\begin{align*}
F V(X) & =\{X\} \tag{2}\\
F V(\lambda X . E) & =F V(E) \backslash\{X\} \tag{3}\\
F V(E F) & =F V(E) \cup F V(F) \tag{4}
\end{align*}
$$

$$
\begin{align*}
X[X \mapsto E] & =E \tag{5}\\
Y[X \mapsto E] & =Y \text { if } Y \neq X \tag{6}\\
(\lambda X . E)[Y \mapsto F] & =\lambda X .(E[Y \mapsto F]) \text { if } Y \neq X \text { and } X \notin F V(F) \tag{7}\\
(E F)[Y \mapsto G] & =(E[Y \mapsto G])(F[Y \mapsto G]) \tag{8}
\end{align*}
$$

$$
\lambda X . E=\lambda Y .(E[X \mapsto Y]) \text { if } Y \notin F V(E) \quad \text { (alpha-renaming) }
$$

1.4 Notable Combinators

An expression without any free variables is called combinator.

$$
\Omega=(\lambda X . X X)(\lambda X . X X) \quad \text { (divergent combinator) }
$$

$$
Y=\lambda F \cdot(\lambda X \cdot F(X X))(\lambda X . F(X X)) \quad(\mathrm{Y} \text { combinator, fixpoint combinator })
$$

For any $F, Y F={ }_{\beta} F(Y F)$.

$$
\begin{array}{rc}
I=\lambda X \cdot X & \text { (identity combinator) } \\
K=\lambda X \cdot \lambda Y \cdot X & \text { (K combinator) } \\
S=\lambda X \cdot \lambda Y \cdot \lambda Z \cdot(X Z)(Y Z) & \text { (S combinator) }
\end{array}
$$

2 Seminar

1. Implement booleans and their operations.
2. Implement natural numbers and their operations.
3. Use fixpoint combinator to implement function $\lambda n . \sum_{i=1}^{n} i$.
