
Programming Language Theory, week 9

1 Lecture

1.1 Syntax

Expr ::= X |
λX.Expr |
Expr Expr,

(1)

where X is a predefined set of variable names.

1.2 Operational Semantics

(λX.E)F → E[X 7→ F ] (beta-reduction)

Two expressions are beta-convertible (=β) ≡ they can be reduced to the
same expression.

1.3 Auxiliaries

FV (X) = {X} (2)

FV (λX.E) = FV (E) \ {X} (3)

FV (EF ) = FV (E) ∪ FV (F ) (4)

X[X 7→ E] = E (5)

Y [X 7→ E] = Y if Y 6= X (6)

(λX.E)[Y 7→ F ] = λX.(E[Y 7→ F ]) if Y 6= X and X 6∈ FV (F ) (7)

(E F )[Y 7→ G] = (E[Y 7→ G])(F [Y 7→ G]) (8)

λX.E = λY.(E[X 7→ Y ]) if Y 6∈ FV (E) (alpha-renaming)

1.4 Notable Combinators

An expression without any free variables is called combinator.

Ω = (λX.XX)(λX.XX) (divergent combinator)

Y = λF.(λX.F (XX))(λX.F (XX)) (Y combinator, fixpoint combinator)

For any F , Y F =β F (Y F ).

I = λX.X (identity combinator)

K = λX.λY.X (K combinator)

S = λX.λY.λZ.(XZ)(Y Z) (S combinator)

1



Programming Language Theory, week 9

2 Seminar

1. Implement booleans and their operations.

2. Implement natural numbers and their operations.

3. Use fixpoint combinator to implement function λn.
∑n
i=1 i.

2


