1 Lecture

- Formally, a small-step operational semantics is a five-tuple $(C F, \Rightarrow, F C, I F, O F)$, where
- $C F$ is a set of configurations,
$-\Rightarrow$ is a binary relation over configurations $(\Rightarrow \subseteq C F \times C F)$,
$-F C$ is a set of final configurations $(F C \subseteq C F)$,
- IF : Program \times Input $\rightarrow C F$ is an input function and
$-O F: F C \rightarrow$ Output is an output function.
- An irreducible configuration is also called normal form. Each normal form is either a final configuration or a stuck state.
- For a given program and its input, small-step operational semantics either produces output value(s), stuck state(s) or no state whatsoever.
- A relation $R \subseteq A \times A$ is confluent iff $\forall a_{1}, a_{2}, a_{3} \in A: a_{1} R^{*} a_{2} \wedge a_{1} R^{*} a_{3} \Rightarrow$ $\exists a_{4} \in A: a_{2} R^{*} a_{4} \wedge a_{3} R^{*} a_{4}$. Confluency implies single normal form.
- A strongly normalising (or terminating) transition relation produces normal form via every path. A weakly normalising transition relation produces normal form via at least one path.
- Well-typed programs don't get stuck. In special cases (universality and strong normalisation don't mix well), well typed programs also always terminate, i.e. they always produce an output value.

2 Seminar

1. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A and an element $x \in A$, write down the expression specifying the number of its normal forms.
2. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A and an element $x \in A$, write down the expression specifying the length of any path from x to any of its normal forms.
3. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A and an element $x \in A$, write down the expression specifying the length of the shortest path from x to any of its normal forms.
4. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A and an element $x \in A$, write down the expression specifying the length of the shortest path from x to its nearest normal form.
5. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A, write down the expression specifying the length of the longest path from an element of A to its nearest normal form.
6. Given an irreflexive $(\forall a \in A:(a, a) \notin R)$ antisymmetric $\left(\forall\left(a, a^{\prime}\right) \in A:\left(a, a^{\prime}\right) \in\right.$ $\left.R \Rightarrow\left(a^{\prime}, a\right) \notin R\right)$ relation R over a set A and an element $x \in A$, write down the expression specifying the next element on the shortest path from x to its nearest normal form.
7. Write down a definition of a function which takes a program and returns its copy with all constant (sub)expressions folded.
8. Write down a parameterised formula which decides whether the program supplied as a parameter at least once reads from an uninitialised variable.
9. Write down a definition of a function which takes a program and returns its copy with all common nontrivial subexpressions extracted to commands.
