
Programming Language Theory, week 2

1 Lecture

1.1 Syntax

Expr ::= Num |
Bool |
4Expr |
Expr � Expr |
Expr ≤ Expr |
Expr nand Expr |
if Expr then Expr else Expr,

(1)

where Num is a predefined set of integer numbers (a.k.a. Z) and Bool is a
predefined set of boolean values.

1.2 Typing

Convention: e, e′, e′′, . . . ∈ Expr, b, b′ ∈ Bool and n, n′ ∈ Num.

n : Number
(2)

b : Boolean
(3)

e : Number

4e : Number
(4)

e : Number e′ : Number

e� e′ : Number
(5)

e : Number e′ : Number

e ≤ e′ : Boolean
(6)

e : Boolean e′ : Boolean

e nand e′ : Boolean
(7)

e : Boolean e′ : Number e′′ : Number

if e then e′ else e′′ : Number
(8)

e : Boolean e′ : Boolean e′′ : Boolean

if e then e′ else e′′ : Boolean
(9)

2 Seminar

1. Write down the big-step operational semantics of the language described
above and check its compliance of its rules with respective rules of the
typing system.

2. Extend the language to include strings. Try to make type rules as compact
as possible.

3. Extend the language with implicit coercions from numbers to booleans.

1



Programming Language Theory, week 2

4. Add division operator to the language. Define its type system so that it
avoids division-by-zero error. Hint: you will probably have to define a
type representing nonzero number.

2


