1 Lecture

1.1 Foundations

In mathematics, the meaning of the equals sign is that the object on its lefthand side is actually the same object as the one on its right-hand side. As a result, any condition that holds true for the left-hand side object also holds true for the right-hand side one (and vice versa).

In particular:

$$
\begin{equation*}
\frac{\lambda x \cdot y=\lambda z \cdot y \quad \lambda z \cdot y[y \mapsto x]=\lambda z \cdot x}{\lambda x \cdot y[y \mapsto x]=\lambda z \cdot x} \tag{1}
\end{equation*}
$$

1.2 Operational Semantics

- Usually well suited for reasoning about whole programs, less than ideal for reasoning about program fragments.
- Sometimes tends to overspecify the implementation of certain language features (e.g. evaluation order).
- Tends to put emphasis on syntax (rather than semantics) of the language.

1.3 Denotational Semantics of Expression Language

1.3.1 Syntax

$$
\begin{align*}
\text { Expr }::= & \text { Num } \mid \\
& \triangle \text { Expr } \mid \tag{2}\\
& \text { Expr } \odot \text { Expr }
\end{align*}
$$

1.3.2 Semantics

Semantic domain: N.

$$
\begin{gather*}
\llbracket n \rrbracket=n \tag{3}\\
\llbracket \Delta e \rrbracket=\llbracket \triangle \rrbracket(\llbracket e \rrbracket) \tag{4}\\
\llbracket \triangle \rrbracket=\lambda x .-x \text { (i.e. unary minus) } \tag{5}\\
\llbracket e_{1} \odot e_{2} \rrbracket=\llbracket \odot \rrbracket\left(\llbracket e_{1} \rrbracket, \llbracket e_{2} \rrbracket\right) \tag{6}\\
\llbracket \odot \rrbracket=\lambda x, y \cdot x+y \text { (i.e. plus) } \tag{7}
\end{gather*}
$$

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

$$
\begin{align*}
\text { Formula }::= & \text { true } \mid \\
& \text { false } \mid \\
& \neg \text { Formula } \mid \tag{8}\\
& \text { Formula BinaryConnective Formula } \\
\text { BinaryConnective }::= & \wedge \mid \vee
\end{align*}
$$

1.4.2 Semantics

Semantic domain: $\{0,1\}$.

$$
\begin{gather*}
\llbracket \text { true } \rrbracket=1 \tag{9}\\
\llbracket f a l s \rrbracket \rrbracket=0 \tag{10}\\
\llbracket \neg f \rrbracket=\llbracket\urcorner \rrbracket(\llbracket f \rrbracket) \tag{11}\\
\llbracket\urcorner \rrbracket=\lambda x \cdot 1-x \tag{12}\\
\llbracket f_{1} c f_{2} \rrbracket=\llbracket c \rrbracket\left(\llbracket f_{1} \rrbracket, \llbracket f_{2} \rrbracket\right) \quad(c \in \text { BinaryConnective }) \tag{13}\\
\llbracket \wedge \rrbracket=\lambda x, y \cdot x \cdot y \tag{14}\\
\llbracket \vee \rrbracket=\lambda x, y \cdot(x+y)-(x \cdot y) \tag{15}
\end{gather*}
$$

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

$$
\begin{align*}
\operatorname{Reg} \operatorname{Exp}::= & \emptyset \mid \\
& \epsilon \mid \\
& A \mid \\
& \operatorname{Reg} \operatorname{Exp} p^{*} \mid \tag{16}\\
& \operatorname{Reg} \operatorname{Exp} \operatorname{BinOp} \operatorname{Reg} \operatorname{Exp} \\
\operatorname{BinOp}::= & +\mid \cdot
\end{align*}
$$

where A is a predefined set of characters (alphabet).

1.5.2 Semantics

Semantic domain: A^{*}.

$$
\begin{gather*}
\llbracket \emptyset \rrbracket=\{ \} \tag{17}\\
\llbracket \epsilon \rrbracket=\{\epsilon\} \tag{18}\\
\llbracket a \rrbracket=\{a\} \tag{19}\\
\llbracket e^{*} \rrbracket=\llbracket^{*} \rrbracket(\llbracket e \rrbracket) \tag{20}\\
\llbracket^{*} \rrbracket=\lambda L \cdot\left\{l_{1} \cdot \ldots \cdot l_{n} \mid n \in N \wedge l_{i} \in L\right\} \quad(\text { note: including } \epsilon) \tag{21}\\
\llbracket e_{1} o e_{2} \rrbracket=\llbracket o \rrbracket\left(\llbracket e_{1} \rrbracket, \llbracket e_{2} \rrbracket\right) \quad(o \in \operatorname{BinOp}) \tag{22}\\
\llbracket+\rrbracket=\cup \tag{23}\\
\llbracket \cdot \rrbracket=\lambda A, B \cdot\{a \cdot b \mid a \in A \wedge b \in B\} \tag{24}
\end{gather*}
$$

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

$$
\begin{align*}
\text { Expr }::= & X \mid \\
& \lambda X . E x p r \mid \tag{25}\\
& \text { Expr Expr }
\end{align*}
$$

1.6.2 Semantics

Semantic domains: env $=$ string \rightarrow function, $f c n=f c n \rightarrow f c n$; notational conventions $e \in e n v, f, f^{\prime} \in f c n, E, E^{\prime} \in E x p r$

$$
\begin{gather*}
\llbracket x \rrbracket=\lambda e . e(x) \tag{26}\\
\llbracket \lambda x \cdot E \rrbracket=\lambda e \cdot \lambda p \cdot \llbracket E \rrbracket(e[x \mapsto p]) \tag{27}\\
\llbracket E_{1} E_{2} \rrbracket=\lambda e .\left(\llbracket E_{1} \rrbracket(e)\right)\left(\llbracket E_{2} \rrbracket(e)\right) \tag{28}
\end{gather*}
$$

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

- selection $\sigma: \sigma_{\text {age }}>=18$,
- projection π : $\pi_{\text {name,age }}$,
- union \cup, intersection \cap and difference \backslash and
- cross-product \times.

2 Seminar

1. Define a denotational semantics of the language of expressions with variables.

Semantic domain: varName \rightarrow Num.

$$
\begin{gather*}
\llbracket n \rrbracket=\lambda e n v \cdot n \tag{29}\\
\llbracket v \rrbracket=\lambda e n v \cdot e n v(v) \tag{30}\\
\llbracket \triangle \rrbracket=\lambda e \cdot \lambda e n v \cdot-e(e n v) \tag{31}\\
\llbracket \odot \rrbracket=\lambda e_{1}, e_{2} \cdot \lambda e n v \cdot e_{1}(e n v)+e_{2}(e n v) \tag{32}
\end{gather*}
$$

2. Extend the semantics of regular expressions with the subtraction operator $(-): r_{1}-r_{2}$ denotes the set of words generated by r_{1} and not generated by r_{2}.

$$
\begin{equation*}
\llbracket-\rrbracket=\backslash \tag{33}
\end{equation*}
$$

3. For OI graduates: what could be an alternative semantic algebra for regular expressions?

Finite automata.
4. What is the denotation of $\lambda x . x$?

$$
\begin{array}{r}
\llbracket \lambda x \cdot x \rrbracket=\lambda e n v \cdot \lambda p \cdot \llbracket x \rrbracket(e n v[x \mapsto p])= \\
\lambda e n v \cdot \lambda p \cdot\left(\lambda e n v^{\prime} \cdot e n v^{\prime}(x)\right)(e n v[x \mapsto p])= \tag{34}\\
\lambda e n v \cdot \lambda p \cdot(e n v[x \mapsto p])(x)=\lambda e n v \cdot \lambda p \cdot p
\end{array}
$$

5. Consider the following situation: relation Student(name, age, schoolId) has n_{1} records, relation $\operatorname{School(id,~schoolName,location)~has~} n_{2}$ records. What is the cost of executing

$$
\pi_{\text {name }, \text { schoolName }}\left(\sigma_{\text {age }>18 \wedge \text { schoolId }=\text { id }}(\text { Student } \times \text { School })\right) ?
$$

The cost of fetching one record from the permanent storage is k_{1}, the cost of processing one record is k_{2}. Are there any ways of speeding up the query?
$k_{1} \cdot n_{1}($ for fetching Student $)+$
$k_{1} \cdot n_{2}$ (for fetching School) +
$k_{2} \cdot n_{1} \cdot n_{2}$ (for computing the cross product) +
$k_{2} \cdot n_{1} \cdot n_{2}$ (for selection) +
$k_{2} \cdot \alpha \cdot n_{1} \cdot n_{2}$ (for projection, α is the percentage of records retained by the selection)

Alternatively, the same result can be obtained by executing

$$
\begin{equation*}
\pi_{\text {name }, \text { schoolName }}\left(\sigma_{\text {schoolId=id }}\left(\sigma_{\text {age }>18}(\text { Student }) \times \text { School }\right)\right) \tag{36}
\end{equation*}
$$

in which case, the cost of the query is

$$
\begin{array}{r}
k_{1} \cdot n_{1}(\text { for fetching Student })+ \\
k_{1} \cdot \beta \cdot n_{1}(\text { for inner selection })+ \\
k_{1} \cdot n_{2}(\text { for fetching School })+ \\
k_{2} \cdot \beta \cdot n_{1} \cdot n_{2}(\text { for computing the cross product })+ \tag{37}\\
k_{2} \cdot \beta \cdot n_{1} \cdot n_{2}(\text { for outer selection })+ \\
k_{2} \cdot \alpha \cdot n_{1} \cdot n_{2} \text { (for projection). }
\end{array}
$$

