Monads

A4M36TPJ, 2013/2014

Introduction

- In pure-functional languages no side-effects are allowed.
- Functions in pure-functional languages depend only on input arguments.
- Monads can be used to simulate (not only) sideeffects.

Debuggable Functions

- We have functions \mathbf{f} and \mathbf{g} that both map floats to floats, but we'd like to modify these functions to also output strings for debugging purposes.

f,g : Float -> Float

Debuggable Functions

- How can we modify the types of \mathbf{f} and \mathbf{g} to admit side effects?
- The only possible way is for these strings to be returned alongside the floating point numbers.
$\mathrm{f}^{\prime}, \mathrm{g}^{\prime}$:: Float -> (Float,String)

Debuggable Functions

Debuggable Functions

- What about function composition?

$$
f^{\prime} . g^{\prime}
$$

- These functions cannot be composed straightforward.
- Return type of \mathbf{g}^{\prime} is not same as input type of \mathbf{f} '.

Debuggable Functions

- We would like to compose functions \mathbf{f}^{\prime} and \mathbf{g}^{\prime} same way as \mathbf{f} and \mathbf{g}.

Debuggable Functions

- To implement previous diagram you can do:

$$
\begin{aligned}
& \text { let }(y, s)=g^{\prime} x \\
& (z, t)=f^{\prime} y \text { in }(z, s++t)
\end{aligned}
$$

- But you have to do it every time you want to compose functions \mathbf{f} ' and \mathbf{g}^{\prime}.

Debuggable Functions

- How can we do it easier programmatically?
- We need to find higher-order function which will do this plumbing for us.
- As the problem is that the output from \mathbf{g}^{\prime} can't simply be plugged into the input to \mathbf{f}^{\prime}, we need to 'upgrade' f'.

Debuggable Functions

- We introduce new function bind with the following type:

```
bind f' :: (Float,String) -> (Float,String)
```

$$
\begin{aligned}
\text { bind :: } & (\text { (Float }->\text { (Float,String)) }-> \\
& (\text { Float,String) }->\text { (Float,String) })
\end{aligned}
$$

Debuggable Functions

- bind must serve two purposes:
- It must apply \mathbf{f}^{\prime} to the correct part of $\mathbf{g}^{\prime} \mathbf{x}$.
- Concatenate the string returned by \mathbf{g}^{\prime} with the string returned by \mathbf{f}.
bind $f^{\prime}(\mathbf{g x}, \mathrm{gs})=\operatorname{let}(\mathrm{fx}, \mathrm{fs})=\mathrm{f}^{\prime} \mathrm{gx}$ in $(\mathrm{fx}, \mathrm{gs}++\mathrm{fs})$

Debuggable Functions

- Given a pair of debuggable functions, \mathbf{f}^{\prime} and \mathbf{g}^{\prime}, we can now compose them together to make a new debuggable function bind f^{\prime}. \mathbf{g}^{\prime}.
- We will write this composition as $\mathbf{f}^{\prime *} \mathbf{g}$ '.

Debuggable Functions

- Even though the output of \mathbf{g}^{\prime} is incompatible with the input of \mathbf{f}^{\prime} we still have a nice easy way to concatenate their operations.
- And this suggests another question: Is there an 'identity' debuggable function?

Debuggable Functions

- Identity have the following properties:

$$
f . i d=f \text { and id } . f=f
$$

- According that we are looking for the function unit:

$$
\text { unit * } f=f \text { * unit }=f
$$

- The function unit does not change the output of the function \mathbf{f}.

Debuggable Functions

unit $x=(x, " ")$

Debuggable Functions

- The unit allows us to 'lift' any function into a debuggable one.
lift f x = (f x,"")
lift $f=$ unit . \mathbf{f}

Debuggable Functions Summary

- The functions, bind and unit, allow us to compose debuggable functions in a straightforward way, and compose ordinary functions with debuggable functions in a natural way.

Exercise: Show that lift \mathbf{f} * lift $\mathbf{g}=\mathbf{l i f t}(\mathbf{f} . \mathbf{g})$

Multivalued Functions

- Consider functions sqrt and cbrt that compute the square root and cube root, respectively, of a real number. These are straightforward functions of type Double -> Double.
- Consider a version of these functions that works with complex numbers.
- Every complex number, besides zero, has two square roots. Similarly, every non-zero complex number has three cube roots.

Multivalued Functions

- Suppose we want to find the sixth root of a real number. We can just concatenate the cube root and square root functions. In other words we can define sixthroot $\mathbf{x}=\mathbf{s q r t}(\mathbf{c b r t} \mathbf{x})$.
- How do we define a function that finds all six sixth roots of a complex number using sqrt' and cbrt'?

Multivalued Functions

- We face the similar problem like in Debuggable Functions. The return type (list) is not compatible with the input type (complex).
- We declare higher-order function bind with the following type:
bind :: (Complex Double -> [Complex Double]) -> ([Complex Double] -> [Complex Double])

Multivalued Functions

bind :: (Complex Double -> [Complex Double])
$->\quad$ ([Complex Double] -> [Complex Double])
bind $f x=$ concat (map $f x$)
unit $\mathrm{X}=[\mathrm{x}]$

Multivalued Functions

$f^{*} \mathrm{~g}=$ bind $\mathrm{f} . \mathrm{g}$

lift $f=$ unit . f

Random Numbers

random :: StdGen -> (a,StdGen)

- To generate a random number you need a seed, and after you've generated the number you need to update the seed to a new value.
- A function that is conceptually a randomised function $\mathbf{a}->\mathbf{b}$ can be written as a function $\mathbf{a}->$ StdGen $->$ (b,StdGen) where StdGen is the type of the seed.

Random Numbers

bind :: (a -> StdGen -> (b,StdGen)) ->
(StdGen $->(\mathrm{a}$, StdGen)) $->$ (StdGen $->$ (b,StdGen))
bind $f \mathbf{x}$ seed $=$ let (x^{\prime}, seed') $=\mathbf{x}$ seed in $f x^{\prime}$ seed'
unit :: a -> (StdGen -> (a,StdGen))
unit $\mathbf{x} \mathbf{g}=(\mathbf{x}, \mathrm{g})$

Random Numbers

Complete Example in Haskell import Random
bind :: (a -> StdGen -> (b,StdGen)) -> (StdGen -> (a,StdGen)) -> (StdGen -> (b,StdGen))
bind $f x$ seed $=$ let $\left(x^{\prime}\right.$, seed' $)=x$ seed in $f x^{\prime}$ seed'
unit $\mathrm{x} \mathrm{g}=(\mathrm{x}, \mathrm{g})$
lift $f=$ unit. f

Random Numbers Complete Example in Haskell

 addDigit $\mathrm{n} \mathrm{g}=$$$
\text { let }\left(a, g^{\prime}\right)=\text { random } g \text { in }\left(n+a^{`} \text { mod` } 10, g^{\prime}\right)
$$

shift $=\operatorname{lift}\left({ }^{*} 10\right)$
test :: Integer -> StdGen -> (Integer,StdGen)
test $=$ bind addDigit. bind shift. addDigit
$g=m k S t d G e n 123$
main $=$ print $\$$ test 0 g

Summary

type Debuggable $\mathrm{a}=(\mathrm{a}$,String $)$
type Multivalued $\mathrm{a}=[\mathrm{a}]$
type Randomised $\mathrm{a}=$ StdGen -> (a,StdGen)
$\mathrm{m} \in\{$ Debuggable, Multivalued, Randomised $\}$

- We're given a function $\mathbf{a}->\mathbf{m} \mathbf{b}$ but we need to somehow apply this function to an object of type $\mathbf{m} \mathbf{a}$ instead of one of type \mathbf{a}.
- In each case we do so by defining a function called bind of type $\mathbf{(a - >} \mathbf{m} \mathbf{b})->(\mathbf{m} \mathbf{a}->\mathbf{m} \mathbf{b})$ and introducing a kind of identity function unit :: a $\mathbf{- >} \mathbf{m} \mathbf{a}$.

Summary

- The triple of objects (m,unit,bind) is the monad, and to be a monad they must satisfy the Monad laws such as unit * $\mathbf{f}=\mathbf{f}$ * unit $=\mathbf{f}, \ldots$

Monads in Haskell

- Haskell is a lazy evaluated pure-functional language.
- Monads are there used for I/O operations, State and other standard side-effects.
- In Haskell we write bind as infix operator $\gg=$. So bind $\mathbf{f} \mathbf{x}$ is written as $\mathbf{x} \gg=\mathbf{f}$.
- unit function is called return.
- From previous examples Debuggable is the Writer monad, Multivalued is the List monad and Randomised is the State monad.

Monads in Haskell

return 7 >>= (\x -> Writer (x+1,"inc."))

$$
\begin{aligned}
& \gg=(\backslash x \text {-> Writer (2*x,"double.")) } \\
& \gg=(\mid x \text {-> Writer (x-1,"dec." }))
\end{aligned}
$$

Haskell Syntax

do $x<-y$
more code
$y \gg=(\mid x->d o$
more code).

Haskell Syntax

do
let $\mathrm{x}=7$
y <- Writer ($\mathrm{x}+1$,"incln")
$z<-$ Writer (2*y,"doubleln")
Writer (z-1,"decln")

References

- http://www.haskell.org/haskellwiki/Monad
- http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html?m=1

