
Monads
A4M36TPJ, 2013/2014

Introduction

• In pure-functional languages no side-effects are
allowed.

• Functions in pure-functional languages depend
only on input arguments.

• Monads can be used to simulate (not only) side-
effects.

Debuggable Functions

• We have functions f and g that both map floats to
floats, but we'd like to modify these functions to
also output strings for debugging purposes.

f,g : Float -> Float

Debuggable Functions

• How can we modify the types of f and g to admit
side effects?

• The only possible way is for these strings to be
returned alongside the floating point numbers.

f',g' :: Float -> (Float,String)

Debuggable Functions

f

x

f x “f was called”

Debuggable Functions

• What about function composition?

f’ . g’

• These functions cannot be composed
straightforward.

• Return type of g’ is not same as input type of f’.

Debuggable Functions
• We would like to compose functions f’ and g’ same

way as f and g.

g’

x

f’

++

f (g x)

“g was called.”

“g was called.f was called.”

Debuggable Functions

• To implement previous diagram you can do:

 let (y,s) = g' x 
 (z,t) = f' y in (z,s++t)

• But you have to do it every time you want to
compose functions f’ and g’.

Debuggable Functions

• How can we do it easier programmatically?

• We need to find higher-order function which will
do this plumbing for us.

• As the problem is that the output from g' can't
simply be plugged into the input to f', we need to
'upgrade' f’.

Debuggable Functions

• We introduce new function bind with the following
type:

 bind f' :: (Float,String) -> (Float,String)

 bind :: (Float -> (Float,String)) ->  
 ((Float,String) -> (Float,String))

Debuggable Functions

• bind must serve two purposes:

• It must apply f' to the correct part of g' x.

• Concatenate the string returned by g' with the
string returned by f’.

bind f' (gx,gs) = let (fx,fs) = f' gx in (fx,gs++fs)

Debuggable Functions

• Given a pair of debuggable functions, f' and g', we
can now compose them together to make a new
debuggable function bind f' . g’.

• We will write this composition as f’ * g’.

Debuggable Functions

• Even though the output of g' is incompatible with
the input of f' we still have a nice easy way to
concatenate their operations.

• And this suggests another question: Is there an
'identity' debuggable function?

Debuggable Functions
• Identity have the following properties:

f . id = f and id . f = f

• According that we are looking for the function unit:

 unit * f = f * unit = f

• The function unit does not change the output of the
function f.

Debuggable Functions

unit x = (x,"")

Debuggable Functions

• The unit allows us to 'lift' any function into a
debuggable one.

lift f x = (f x,”")

lift f = unit . f

Debuggable Functions  
Summary

• The functions, bind and unit, allow us to compose
debuggable functions in a straightforward way, and
compose ordinary functions with debuggable
functions in a natural way.

Exercise: Show that lift f * lift g = lift (f.g)

Multivalued Functions
• Consider functions sqrt and cbrt that compute the square

root and cube root, respectively, of a real number. These
are straightforward functions of type  
Double -> Double.

• Consider a version of these functions that works with
complex numbers.

• Every complex number, besides zero, has two square
roots. Similarly, every non-zero complex number has three
cube roots.

sqrt',cbrt' :: Complex Double -> [Complex Double]

Multivalued Functions

• Suppose we want to find the sixth root of a real
number. We can just concatenate the cube root
and square root functions. In other words we can
define sixthroot x = sqrt (cbrt x).

• How do we define a function that finds all six sixth
roots of a complex number using sqrt' and cbrt’?

Multivalued Functions
• We face the similar problem like in Debuggable

Functions. The return type (list) is not compatible
with the input type (complex).

• We declare higher-order function bind with the
following type:

bind :: (Complex Double -> [Complex Double]) ->
 ([Complex Double] -> [Complex Double])

Multivalued Functions

bind :: (Complex Double -> [Complex Double])  
-> ([Complex Double] -> [Complex Double])

bind f x = concat (map f x)

unit x = [x]

Multivalued Functions

f * g = bind f . g

lift f = unit . f

Random Numbers
random :: StdGen -> (a,StdGen)

• To generate a random number you need a seed,
and after you've generated the number you need to
update the seed to a new value.

• A function that is conceptually a randomised
function a -> b can be written as a function  
a -> StdGen -> (b,StdGen) where StdGen is the
type of the seed.

Random Numbers

bind :: (a -> StdGen -> (b,StdGen)) ->  
(StdGen ->(a,StdGen)) -> (StdGen -> (b,StdGen))

bind f x seed = let (x',seed') = x seed in f x' seed’

unit :: a -> (StdGen -> (a,StdGen))

unit x g = (x,g)

Random Numbers 
Complete Example in Haskell
import Random

bind :: (a -> StdGen -> (b,StdGen)) -> (StdGen ->
(a,StdGen)) -> (StdGen -> (b,StdGen))

bind f x seed = let (x',seed') = x seed in f x' seed'

unit x g = (x,g)

lift f = unit . f

Random Numbers 
Complete Example in Haskell
addDigit n g =

 let (a,g') = random g in (n + a `mod` 10,g')

shift = lift (*10)

test :: Integer -> StdGen -> (Integer,StdGen)

test = bind addDigit . bind shift . addDigit

g = mkStdGen 123

main = print $ test 0 g

Summary
type Debuggable a = (a,String)

type Multivalued a = [a]

type Randomised a = StdGen -> (a,StdGen)

m ∈ {Debuggable, Multivalued, Randomised}

• We're given a function a -> m b but we need to somehow apply
this function to an object of type m a instead of one of type a.

• In each case we do so by defining a function called bind of type
(a -> m b) -> (m a -> m b) and introducing a kind of identity
function unit :: a -> m a.

Summary

• The triple of objects (m,unit,bind) is the monad,
and to be a monad they must satisfy the Monad
laws such as unit * f = f * unit = f, …

Monads in Haskell
• Haskell is a lazy evaluated pure-functional language.

• Monads are there used for I/O operations, State and other
standard side-effects.

• In Haskell we write bind as infix operator >>=. So bind f x
is written as x >>= f.

• unit function is called return.

• From previous examples Debuggable is the Writer
monad, Multivalued is the List monad and Randomised
is the State monad.

Monads in Haskell

return 7 >>= (\x -> Writer (x+1,"inc."))

 >>= (\x -> Writer (2*x,"double."))

 >>= (\x -> Writer (x-1,"dec."))

Haskell Syntax

do x <- y

 more code

y >>= (\x -> do

 more code).

Haskell Syntax

 do

 let x = 7

 y <- Writer (x+1,"inc\n")

 z <- Writer (2*y,"double\n")

 Writer (z-1,"dec\n")

References

• http://www.haskell.org/haskellwiki/Monad

• http://blog.sigfpe.com/2006/08/you-could-have-
invented-monads-and.html?m=1

http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html?m=1

