Naming and State

A4M36TPJ, 2013/2014

Naming Features

- Nameable values
- Parameter-passing mechanisms
- Scoping
- Name control
- Multiple namespaces
- Name capture
- Side effects

Parameter Passing

- call-by-name - a formal parameter names the computation designated by an unevaluated argument expression. Normal-order reduction strategy. (Haskell)
- call-by-value - a formal parameter names the value of an evaluated argument expression. Strict argument evaluation strategy. (C, Java, Pascal)

Call-by-name
 vs.

Call-by-value

CBN	CBV
$\begin{aligned} & (\operatorname{app}(\operatorname{lam} \times 2)(\text { prim / 1 0)) } \\ & \overrightarrow{C B N}_{[\beta]} 2 \end{aligned}$	(app (lam x 2) (prim / 1 0)) \{This stuck expression models an error\}
	```(app (lam x 3) (app (lam a (app a a)) (lam a (app a a)))) \vec{CBV}}[\beta\mathrm{ -value] (app (lam x 3) (app (lam a (app a a)) (lam a (app a a)))) \vec{CBV}}\mp@subsup{}{[\beta-value]}{}\cdots{\mathrm{ {nfinite loop}```

## Call-by-denotation (CBD)

- Call-by-name determines the meaning of an operand expression relative to the environment available at the point of call.
- Call-by-denotation instead determines the meaning of an operand expression relative to the environment where the formal parameter is referenced.


## CBD Example

## (app (lam y <br> $$
\begin{aligned} & (\operatorname{app}(\operatorname{lam} x y) \\ & 3)) \end{aligned}
$$ <br> x)

- Error in Call-by-name or Call-by-value (because x is unbound).
- In CBD, the unevaluated outer $x$ is effectively substituted for $y$.


## CBD Example

## (app (lam x x) 3)

- CBD allows name capture.
- The evaluation of the outer $x$ yields not what we would normally think of as a value but an environment accessor that is eventually applied to an environment that has a binding for the inner $x$.


## Static Scope

```
function f(int a) {
 function g(int b) {
 return a + b;
}
 return a + g(3);
}
```

- In a statically scoped language, every variable reference refers to the variable introduced by the nearest lexically enclosing variable declaration of that identifier in the abstract syntax tree of the program.


## Dynamic Scope

- A free variable in a procedure (or macro) body gets its meaning from the environment at the point where the procedure is called rather than the environment at the point where the procedure is created.
- In these languages, it is not possible to determine a unique declaration corresponding to a given free variable reference; the effective declaration depends on where the procedure is called.


## Dynamic Scope

(let ((a 1))

(let ((a 20))
(f 300))))

- In static scope a in $f$ refers to 1 , where the $f$ was defined. The result is 301.
- In dynamic scope a in f refers to 20 , where the $f$ was called. The result is 320 .


# Multiple Namespaces 

$$
\begin{aligned}
& \text { class } \mathrm{X} \text { \{ } \\
& \text { int } \mathrm{x} ; \\
& \quad \mathrm{X}(\text { int } \mathrm{x})\{ \\
& \quad \text { this. } \mathrm{x}=\mathrm{x} ; \\
& \} \quad \text { int } \mathrm{x}() \text { \{ return } \mathrm{x} ;\}
\end{aligned}
$$

## State

- Purely functional languages and math are stateless.
- We can model state in functional languages as an iteration over states.
- An iteration is a computation that characterizes the state of a system in terms of the values of a set of variables known as its state variables.
- The value of each state variable in an iteration at time $\mathbf{t}$ is a function of the values of the state variables at time $\mathbf{t} \mathbf{- 1}$.


## State

$$
\begin{gathered}
\max : N^{*} \rightarrow N \\
\max \left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, 1,0\right) \\
\text { loop }: N^{*} \times N \times N \rightarrow N
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right) & =m \quad \text { if } c>n & & \\
\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right) & =\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c+1, m\right) & & \text { if } c \leq n \wedge a_{c} \leq m \\
\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right) & =\operatorname{loop}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c+1, a_{c}\right) & & \text { otherwise }
\end{aligned}
$$

## Monadic Style

- Monadic style separates state handling code.
- The name "monadic style" is derived from an algebraic structure, the monad, that captures the essence of manipulating information that is singlethreaded through a computation.


## Monadic Style Example

State $=N^{*} \times N \times N$<br>Action $=$ State $\rightarrow$ State<br>Condition $=$ State $\rightarrow$ Boolean

> updateMax : Action updateMax $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right)=\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, a_{c}\right)$ updateNeeded : Condition updateNeeded $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right)=$ true if $a_{c}>m$ updateNeeded $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right)=$ false otherwise increaseIndex $:$ Action

## Monadic Style Example

notFinished: Condition
notFinished $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right)=$ false if $c>n$ finished $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, c, m\right)=$ true otherwise

if Statement : Condition $\times$ Action $\rightarrow$ Action<br>ifStatement $($ cond, body $)=\lambda s . b o d y(s) \quad$ if $\operatorname{cond}(s)=$ true ifStatement $($ cond, body $)=\lambda s . s \quad$ otherwise

$$
\text { for Loop }: \text { Condition } \times \text { Action } \times \text { Action } \rightarrow \text { Action }
$$

forLoop $($ cond, iter, body $)=\lambda$ s.ifStatement $($ cond, forLoop (cond, iter, body $)($ iter (body (s) $)$ )

## Monadic Style Example

$$
\max : N^{*} \rightarrow N
$$

$\max \left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\pi_{3}($ forLoop $($ notFinished,increaseIndex, if Statement(updateNeeded, updateMax))

$$
\left.\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, 1,0\right)\right)
$$

