Naming and State

A4AM36TPJ, 2015/2016



Naming Features

e Nameable values

 Parameter-passing mechanisms

e Scoping

e Name control

* Multiple namespaces

* Name capture

e Side effects



Parameter Passing

e call-by-name - a formal parameter names the com-
putation designated by an unevaluated argument
expression. Normal-order reduction strategy.
(Haskell)

» call-by-value - a formal parameter names the value
of an evaluated argument expression. Strict
argument evaluation strategy. (C, Java, Pascal)



Call-by-name
VS.
Call-by-value

CBN

CBV

(app (lam x (prim * x X))
(prim + 2 3))

?i§ﬁ>wﬂ (prim * (prim + 2 3)
(prim + 2 3))

%ﬁiﬁ>ﬁl (prim * 5 (prim + 2 3))

%ﬁ§§>hl (prim * 5 5)

TBN (o) 2°

(app (lam x (prim * x x))
(prim + 2 3))

?i§§>ﬁﬂ (app (lam x (prim * x x))
5)

:EEE;Wﬁﬂmhw] (prim * 5 5)

CBV [*] 25

(app (lam x 2) (prim / 1 0))

CBN 18]

(app (lam x 2) (prim / 1 0))
{ This stuck expression models an error}

(app (lam x 3)
(app (lam a (app a a))
(lam a (app a a))))

(app (lam x 3)
(app (lam a (app a a))
(lam a (app a a))))

E'—E‘?>[ﬁ—vzilue]
(app (lam x 3)
(app (lam a (app a a))
(lam a (app a a))))

— ... {Infinite loop}

CBV' [B-value]




Call-by-denotation (CBD)

e Call-by-name determines the meaning of an
operand expression relative to the environment
available at the point of call.

* Call-by-denotation instead determines the meaning
of an operand expression relative to the
environment where the formal parameter is
referenced.



CBD Example

(app (lam y
(app (lam x y)
3))
X)

* Error in Call-by-name or Call-by-value (because x
IS unbound).

* In CBD, the unevaluated outer x is effectively
substituted for vy.



CBD Example

(app (lam x x) 3)

 CBD allows name capture.

* The evaluation of the outer x yields not what we would
normally think of as a value but an environment accessor
that Is eventually applied to an environment that has a
binding for the inner X.



Static Scope

function f(int a) {

function g(int b) A
return a + b;

}

return a + g(3);

* |n a statically scoped language, every variable
reference refers to the variable introduced by the
nearest lexically enclosing variable declaration of
that identitier in the abstract syntax tree of the program.



Dynamic Scope

* A free variable in a procedure (or macro) body gets
its meaning from the environment at the point
where the procedure is called rather than the
environment at the point where the procedure Is
created.

* |n these languages, it is not possible to determine a
unique declaration corresponding to a given
free variable reference; the effective declaration
depends on where the procedure is called.



Dynamic Scope

(let ((a 1))
(let ((f (abs (x) (@+ x a))))
(let ((a 20))
(f 300))))

* |n static scope ainfrefersto 1, where the f was
defined. The result is 301.

* |n dynamic scope a in f refers to 20, where the f
was called. The result is 320.



Multiple Namespaces

class X {
int X;

X(int x) {
this.x = x;

}

int x() { return x; }

¥



State

Purely functional languages and math are stateless.

We can model state in functional languages as an
iteration over states.

An iteration is a computation that characterizes the
state of a system in terms of the values of a set of
variables known as its state variables.

The value of each state variable in an iteration at time
t is a function of the values of the state variables at
tmet-1.



State

max : N* — N
maz({a,...,an)) = loop({ai,...,ay),1,0)
loop: N* x N x N — N

loop({a1,...,an),c,m)=m ifc>n
loop({a1,...,an),c,m) =1loop({ay,...,an),c+1,m) ifc<nAa.<m

loop({ay,...,an),c,m)=1loop({ay,...,an),c+1,a.) otherwise



Monadic Style

* Monadic style separates state handling code.

 The name “monadic style” is derived from an
algebraic structure, the monad, that captures the

essence of manipulating information that is single-
threaded through a computation.



Monadic Style Example

State = N* x N x N
Action = State — State
Condition = State — Boolean

updateMax : Action

update Mazx({a1,...,an),c,m) = ((a1,...,a0n),C, ac)

updateN eeded : Condition
updateNeeded({a1,...,an),c,m) =true if a. >m

updateNeeded({a1,...,an),c,m) = false otherwise

increaselndex : Action

increaselndex({ai,...,an),c,m) = ({a,...,a,),c+ 1,m)



Monadic Style Example

notFinished : Condition
notFinished({ay,...,an),c,m) = false if ¢ >n

finished({a1,...,a,),c,m) =true otherwise

1 f Statement : Condition x Action — Action
i f Statement(cond, body) = As.body(s) if cond(s) = true
i f Statement(cond, body) = As.s otherwise

forLoop : Condition X Action x Action — Action

forLoop(cond, iter, body) = As.i f Statement(cond,
forLoop(cond, iter, body))(tter(body(s)))



Monadic Style Example

max : N* — N
maz({ai,...,a,)) = mw3(forLoop(notFinished,increaselndex,
i f Statement(update N eeded, update M azx))

(<CL1, .. .,CLn>, 1,0))



