
Naming and State
A4M36TPJ, 2015/2016

Naming Features
• Nameable values

• Parameter-passing mechanisms

• Scoping

• Name control

• Multiple namespaces

• Name capture

• Side effects

Parameter Passing
• call-by-name - a formal parameter names the com-

putation designated by an unevaluated argument
expression. Normal-order reduction strategy.
(Haskell)

• call-by-value - a formal parameter names the value
of an evaluated argument expression. Strict
argument evaluation strategy. (C, Java, Pascal)

Call-by-name  
vs.  

Call-by-value7.1.1 Call-by-Name vs. Call-by-Value: The Operational View 311

CBN CBV
(app (lam x (prim * x x))

(prim + 2 3))
====
CBN

⇒
[β]

(prim * (prim + 2 3)

(prim + 2 3))
====
CBN

⇒
[+]

(prim * 5 (prim + 2 3))

====
CBN

⇒
[+]

(prim * 5 5)

====
CBN

⇒
[*]

25

(app (lam x (prim * x x))
(prim + 2 3))

====
CBV

⇒
[+]

(app (lam x (prim * x x))

5)
====
CBV

⇒
[β-value]

(prim * 5 5)

====
CBV

⇒
[*]

25

(app (lam x 2) (prim / 1 0))
====
CBN

⇒
[β]

2
(app (lam x 2) (prim / 1 0))
{This stuck expression models an error}

(app (lam x 3)
(app (lam a (app a a))

(lam a (app a a))))
====
CBN

⇒
[β]

3

(app (lam x 3)
(app (lam a (app a a))

(lam a (app a a))))
====
CBV

⇒
[β-value]

(app (lam x 3)
(app (lam a (app a a))

(lam a (app a a))))
====
CBV

⇒
[β-value]

. . . {Infinite loop}

Figure 7.2 Examples illustrating the difference between CBN and CBV.

encounters an error or diverges (goes into a loop), CBV won’t return a value in
some cases where CBN would — i.e., when the formal is never referenced during
the evaluation of the body.

Despite these differences, CBN and CBV are closely related in FLK:

Theorem 7.1 (FLK CBN/CBV Relationship) If E is an FLK ex-

pression and E =
∗

==
CBV

⇒ V , then E =
∗

===
CBN

⇒ V ′, where V ′ =obs V .

This theorem says that if an FLK expression E evaluates to a value V using the
CBV strategy, it evaluates to an observationally equivalent value V ′ using the
CBN strategy. V and V ′ might not be syntactically identical, but they must
behave the same in all FLK program contexts. For example, if V is (lam x 3)

then V ′ might be (lam x (prim + 1 2)). The theorem also says that if E does
not evaluate to a value under CBN (i.e., it diverges or gets stuck at an error),
then it cannot evaluate to a value under CBV. Figure 7.2 shows that CBN can
sometimes yield a value in cases where CBV doesn’t. So the CBN strategy yields

Call-by-denotation (CBD)

• Call-by-name determines the meaning of an
operand expression relative to the environment
available at the point of call.

• Call-by-denotation instead determines the meaning
of an operand expression relative to the
environment where the formal parameter is
referenced.

CBD Example

7.1.6 Call-by-Denotation 329

E [[y]] e1
= (λe . (with-nameable (lookup y e) (λn . (n e)))) e1
= (with-nameable (lookup y e1) (λn . (n e1)))
= (with-nameable (Nameable !BindingVal

(λe . (with-nameable (lookup x e) (λn . (n e)))))
(λn . (n e1)))

= (λe . (with-nameable (lookup x e) (λn . (n e)))) e1
= (with-nameable (lookup x e1) (λn . (n e1)))
= (with-nameable (Nameable !BindingVal

(λe . (val-to-comp (Int !Value 3))))
(λn . (n e1)))

= (λe . (val-to-comp (Int !Value 3))) e1
= (val-to-comp (Int !Value 3))

Figure 7.9 A calculation of the meaning of y in environment e1 .

in an environment e0 in which the identifier x is unbound. This expression
desugars to

(app (lam y
(app (lam x y)

3))
x)

In both CBN and CBV, the meaning of this expression is an unbound-variable
error, because the value of (the outer) x is required but nowhere defined. In
CBD, however, the unevaluated outer x is effectively substituted for y to yield
the application (app (lam x x) 3), whose value is 3. The outer x is no longer
unbound because it is captured by the inner x.

Let’s understand this example in more detail. The value of the given ex-
pression will end up being the value of the variable y evaluated in the following
environment e1 :

e1 = {x !→ (Nameable !BindingVal (λe . (val-to-comp (Int !Value 3)))),
y !→ (Nameable !BindingVal (λe . (with-nameable (lookup x e) (λn . (n e)))))}

(We leave the details of how this point is reached as an exercise.) The meaning of
y in e1 at this point is presented in Figure 7.9, which shows that the expression
indeed evaluates to 3.

The somewhat bizarre behavior of call-by-denotation in this example is due
to a kind of name capture. The evaluation of the outer x yields not what we
would normally think of as a value but an environment accessor that is eventually

• Error in Call-by-name or Call-by-value (because x
is unbound).

• In CBD, the unevaluated outer x is effectively
substituted for y.

CBD Example

• CBD allows name capture.

• The evaluation of the outer x yields not what we would
normally think of as a value but an environment accessor
that is eventually applied to an environment that has a
binding for the inner x.

7.1.6 Call-by-Denotation 329

E [[y]] e1
= (λe . (with-nameable (lookup y e) (λn . (n e)))) e1
= (with-nameable (lookup y e1) (λn . (n e1)))
= (with-nameable (Nameable !BindingVal

(λe . (with-nameable (lookup x e) (λn . (n e)))))
(λn . (n e1)))

= (λe . (with-nameable (lookup x e) (λn . (n e)))) e1
= (with-nameable (lookup x e1) (λn . (n e1)))
= (with-nameable (Nameable !BindingVal

(λe . (val-to-comp (Int !Value 3))))
(λn . (n e1)))

= (λe . (val-to-comp (Int !Value 3))) e1
= (val-to-comp (Int !Value 3))

Figure 7.9 A calculation of the meaning of y in environment e1 .

in an environment e0 in which the identifier x is unbound. This expression
desugars to

(app (lam y
(app (lam x y)

3))
x)

In both CBN and CBV, the meaning of this expression is an unbound-variable
error, because the value of (the outer) x is required but nowhere defined. In
CBD, however, the unevaluated outer x is effectively substituted for y to yield
the application (app (lam x x) 3), whose value is 3. The outer x is no longer
unbound because it is captured by the inner x.

Let’s understand this example in more detail. The value of the given ex-
pression will end up being the value of the variable y evaluated in the following
environment e1 :

e1 = {x !→ (Nameable !BindingVal (λe . (val-to-comp (Int !Value 3)))),
y !→ (Nameable !BindingVal (λe . (with-nameable (lookup x e) (λn . (n e)))))}

(We leave the details of how this point is reached as an exercise.) The meaning of
y in e1 at this point is presented in Figure 7.9, which shows that the expression
indeed evaluates to 3.

The somewhat bizarre behavior of call-by-denotation in this example is due
to a kind of name capture. The evaluation of the outer x yields not what we
would normally think of as a value but an environment accessor that is eventually

Static Scope

Programming Language Theory, week 12

forLoop : Condition⇥Action⇥Action ! Action

forLoop(cond, iter, body) = �s.ifStatement(cond,

forLoop(cond, iter, body)(iter(body(s))))

(11)

max : N

⇤ ! N

max(ha1, . . . , ani) = ⇡3(forLoop(finished, increaseIndex,

ifStatement(updateNeeded, updateMax))

(ha1, . . . , ani, 1, 0))

(12)

• A program fragment is said to be referentially transparent if it has the

same meaning regardless of its context.

1.2 Naming

• Parameter passing: call-by-name, call-by-value, call-by-denotation.

• Static scope.

function f(int a) {

function g(int b) {

return a + b;

}

return a + g(3);

}

• Multiple namespaces.

class X {

int x;

X(int x) {

this.x = x;

}

int x() { return x; }

}

• Dynamic scope.

2 Seminar

1. Define function switch : (State ! N)⇥ (N ! Action) ! Action.

2

• In a statically scoped language, every variable
reference refers to the variable introduced by the
nearest lexically enclosing variable declaration of
that identifier in the abstract syntax tree of the program.

Dynamic Scope
• A free variable in a procedure (or macro) body gets

its meaning from the environment at the point
where the procedure is called rather than the
environment at the point where the procedure is
created.

• In these languages, it is not possible to determine a
unique declaration corresponding to a given
free variable reference; the effective declaration
depends on where the procedure is called.

Dynamic Scope

7.2.1 Hierarchical Scoping: Static and Dynamic 339

Example

As an example of static versus dynamic scoping, consider the following FL ex-
pression:

(let ((a 1))
(let ((f (abs (x) (@+ x a))))

(let ((a 20))
(f 300))))

Informally, we can reason as follows. The procedure named f refers to a free
variable a. Under static scoping, this variable is bound to the value of a where the
procedure is defined (i.e., 1). Thus, the binding between a and 20 is irrelevant,
and the result of the call (f 300) is 301. On the other hand, under dynamic
scoping, the free variable gets its value from whatever binding of a is dynamically
apparent. In the call (f 300), the binding between a and 20 shadows the binding
between a and 1, so the value of the call is 320.

We can use the denotational definitions of scoping to analyze this example
formally. The example FL expression above desugars into the following FLK
expression:

(app (lam a {Elam:a1}
(app (lam f {Elam:f }

(app (lam a (app f 300)) {Elam:a20}
20))

(lam x (primop + x a)))) {Elam:x}
1)

The four lam expressions have been annotated with names that will be used to
abbreviate them. Figures 7.11 and 7.12 highlight the key steps for using the
denotational definitions to derive the value of the desugared expression under
static scoping and dynamic scoping in CBV FLK. The calculations in the two
figures begin similarly, because the following equality holds in both statically and
dynamically scoped CBV FLK, as you should verify:

(E [[(app (lam I Ebody) Erand)]] e) = with-value (E [[Erand]] e)
(λv . (E [[Ebody]] [I !→ v]e))

• In static scope a in f refers to 1, where the f was
defined. The result is 301.

• In dynamic scope a in f refers to 20, where the f
was called. The result is 320.

Multiple Namespaces

Programming Language Theory, week 12

forLoop : Condition⇥Action⇥Action ! Action

forLoop(cond, iter, body) = �s.ifStatement(cond,

forLoop(cond, iter, body)(iter(body(s))))

(11)

max : N

⇤ ! N

max(ha1, . . . , ani) = ⇡3(forLoop(finished, increaseIndex,

ifStatement(updateNeeded, updateMax))

(ha1, . . . , ani, 1, 0))

(12)

• A program fragment is said to be referentially transparent if it has the

same meaning regardless of its context.

1.2 Naming

• Parameter passing: call-by-name, call-by-value, call-by-denotation.

• Static scope.

function f(int a) {

function g(int b) {

return a + b;

}

return a + g(3);

}

• Multiple namespaces.

class X {

int x;

X(int x) {

this.x = x;

}

int x() { return x; }

}

• Dynamic scope.

2 Seminar

1. Define function switch : (State ! N)⇥ (N ! Action) ! Action.

2

State
• Purely functional languages and math are stateless.

• We can model state in functional languages as an
iteration over states.

• An iteration is a computation that characterizes the
state of a system in terms of the values of a set of
variables known as its state variables.

• The value of each state variable in an iteration at time  
t is a function of the values of the state variables at  
time t − 1.

State

Programming Language Theory, week 12

1 Lecture

1.1 State

• Purely functional languages (and math) are stateless.

• Stateful computation can be represented as an iteration over states.

max : N

⇤ ! N

max(ha1, . . . , ani) = loop(ha1, . . . , ani, 1, 0)
(1)

loop : N

⇤ ⇥N ⇥N ! N

loop(ha1, . . . , ani, c,m) = m if c > n

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1,m) if c  n ^ ac  m

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1, ac) otherwise

(2)

• Monadic style separates state-handling code.

State = N

⇤ ⇥N ⇥N (3)

Action = State ! State (4)

Condition = State ! Boolean (5)

updateMax : Action

updateMax(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c, ac)
(6)

updateNeeded : Condition

updateNeeded(ha1, . . . , ani, c,m) = true if ac > m

updateNeeded(ha1, . . . , ani, c,m) = false otherwise

(7)

increaseIndex : Action

increaseIndex(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c+ 1,m)

(8)

finished : Condition

finished(ha1, . . . , ani, c,m) = true if c > n

finished(ha1, . . . , ani, c,m) = false otherwise

(9)

ifStatement : Condition⇥Action ! Action

ifStatement(cond, body) = �s.body(s) if cond(s) = true

ifStatement(cond, body) = �s.s otherwise

(10)

1

Programming Language Theory, week 12

1 Lecture

1.1 State

• Purely functional languages (and math) are stateless.

• Stateful computation can be represented as an iteration over states.

max : N

⇤ ! N

max(ha1, . . . , ani) = loop(ha1, . . . , ani, 1, 0)
(1)

loop : N

⇤ ⇥N ⇥N ! N

loop(ha1, . . . , ani, c,m) = m if c > n

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1,m) if c  n ^ ac  m

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1, ac) otherwise

(2)

• Monadic style separates state-handling code.

State = N

⇤ ⇥N ⇥N (3)

Action = State ! State (4)

Condition = State ! Boolean (5)

updateMax : Action

updateMax(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c, ac)
(6)

updateNeeded : Condition

updateNeeded(ha1, . . . , ani, c,m) = true if ac > m

updateNeeded(ha1, . . . , ani, c,m) = false otherwise

(7)

increaseIndex : Action

increaseIndex(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c+ 1,m)

(8)

finished : Condition

finished(ha1, . . . , ani, c,m) = true if c > n

finished(ha1, . . . , ani, c,m) = false otherwise

(9)

ifStatement : Condition⇥Action ! Action

ifStatement(cond, body) = �s.body(s) if cond(s) = true

ifStatement(cond, body) = �s.s otherwise

(10)

1

Monadic Style

• Monadic style separates state handling code.

• The name “monadic style” is derived from an
algebraic structure, the monad, that captures the
essence of manipulating information that is single-
threaded through a computation.

Monadic Style Example

Programming Language Theory, week 12

1 Lecture

1.1 State

• Purely functional languages (and math) are stateless.

• Stateful computation can be represented as an iteration over states.

max : N

⇤ ! N

max(ha1, . . . , ani) = loop(ha1, . . . , ani, 1, 0)
(1)

loop : N

⇤ ⇥N ⇥N ! N

loop(ha1, . . . , ani, c,m) = m if c > n

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1,m) if c  n ^ ac  m

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1, ac) otherwise

(2)

• Monadic style separates state-handling code.

State = N

⇤ ⇥N ⇥N (3)

Action = State ! State (4)

Condition = State ! Boolean (5)

updateMax : Action

updateMax(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c, ac)
(6)

updateNeeded : Condition

updateNeeded(ha1, . . . , ani, c,m) = true if ac > m

updateNeeded(ha1, . . . , ani, c,m) = false otherwise

(7)

increaseIndex : Action

increaseIndex(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c+ 1,m)

(8)

finished : Condition

finished(ha1, . . . , ani, c,m) = true if c > n

finished(ha1, . . . , ani, c,m) = false otherwise

(9)

ifStatement : Condition⇥Action ! Action

ifStatement(cond, body) = �s.body(s) if cond(s) = true

ifStatement(cond, body) = �s.s otherwise

(10)

1

Programming Language Theory, week 12

1 Lecture

1.1 State

• Purely functional languages (and math) are stateless.

• Stateful computation can be represented as an iteration over states.

max : N

⇤ ! N

max(ha1, . . . , ani) = loop(ha1, . . . , ani, 1, 0)
(1)

loop : N

⇤ ⇥N ⇥N ! N

loop(ha1, . . . , ani, c,m) = m if c > n

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1,m) if c  n ^ ac  m

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1, ac) otherwise

(2)

• Monadic style separates state-handling code.

State = N

⇤ ⇥N ⇥N (3)

Action = State ! State (4)

Condition = State ! Boolean (5)

updateMax : Action

updateMax(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c, ac)
(6)

updateNeeded : Condition

updateNeeded(ha1, . . . , ani, c,m) = true if ac > m

updateNeeded(ha1, . . . , ani, c,m) = false otherwise

(7)

increaseIndex : Action

increaseIndex(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c+ 1,m)

(8)

finished : Condition

finished(ha1, . . . , ani, c,m) = true if c > n

finished(ha1, . . . , ani, c,m) = false otherwise

(9)

ifStatement : Condition⇥Action ! Action

ifStatement(cond, body) = �s.body(s) if cond(s) = true

ifStatement(cond, body) = �s.s otherwise

(10)

1

Monadic Style Example

Programming Language Theory, week 12

1 Lecture

1.1 State

• Purely functional languages (and math) are stateless.

• Stateful computation can be represented as an iteration over states.

max : N

⇤ ! N

max(ha1, . . . , ani) = loop(ha1, . . . , ani, 1, 0)
(1)

loop : N

⇤ ⇥N ⇥N ! N

loop(ha1, . . . , ani, c,m) = m if c > n

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1,m) if c  n ^ ac  m

loop(ha1, . . . , ani, c,m) = loop(ha1, . . . , ani, c+ 1, ac) otherwise

(2)

• Monadic style separates state-handling code.

State = N

⇤ ⇥N ⇥N (3)

Action = State ! State (4)

Condition = State ! Boolean (5)

updateMax : Action

updateMax(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c, ac)
(6)

updateNeeded : Condition

updateNeeded(ha1, . . . , ani, c,m) = true if ac > m

updateNeeded(ha1, . . . , ani, c,m) = false otherwise

(7)

increaseIndex : Action

increaseIndex(ha1, . . . , ani, c,m) = (ha1, . . . , ani, c+ 1,m)

(8)

notF inished : Condition

notF inished(ha1, . . . , ani, c,m) = false if c > n

finished(ha1, . . . , ani, c,m) = true otherwise

(9)

ifStatement : Condition⇥Action ! Action

ifStatement(cond, body) = �s.body(s) if cond(s) = true

ifStatement(cond, body) = �s.s otherwise

(10)

1

Programming Language Theory, week 12

forLoop : Condition⇥Action⇥Action ! Action

forLoop(cond, iter, body) = �s.ifStatement(cond,

forLoop(cond, iter, body))(iter(body(s)))

(11)

max : N

⇤ ! N

max(ha1, . . . , ani) = ⇡3(forLoop(notF inished, increaseIndex,

ifStatement(updateNeeded, updateMax))

(ha1, . . . , ani, 1, 0))

(12)

• A program fragment is said to be referentially transparent if it has the

same meaning regardless of its context.

1.2 Naming

• Parameter passing: call-by-name, call-by-value, call-by-denotation.

• Static scope.

function f(int a) {

function g(int b) {

return a + b;

}

return a + g(3);

}

• Multiple namespaces.

class X {

int x;

X(int x) {

this.x = x;

}

int x() { return x; }

}

• Dynamic scope.

2 Seminar

1. Define function switch : (State ! N)⇥ (N ! Action) ! Action.

2

Monadic Style Example
Programming Language Theory, week 12

forLoop : Condition⇥Action⇥Action ! Action

forLoop(cond, iter, body) = �s.ifStatement(cond,

forLoop(cond, iter, body))(iter(body(s)))

(11)

max : N

⇤ ! N

max(ha1, . . . , ani) = ⇡3(forLoop(notF inished, increaseIndex,

ifStatement(updateNeeded, updateMax))

(ha1, . . . , ani, 1, 0))

(12)

• A program fragment is said to be referentially transparent if it has the

same meaning regardless of its context.

1.2 Naming

• Parameter passing: call-by-name, call-by-value, call-by-denotation.

• Static scope.

function f(int a) {

function g(int b) {

return a + b;

}

return a + g(3);

}

• Multiple namespaces.

class X {

int x;

X(int x) {

this.x = x;

}

int x() { return x; }

}

• Dynamic scope.

2 Seminar

1. Define function switch : (State ! N)⇥ (N ! Action) ! Action.

2

