
Denotational
Semantics

A4M36TPJ, 2015/2016

Operational Semantics
• Usually well suited for reasoning about whole

programs, less than ideal for reasoning about
program fragments.

• Sometimes tends to overspecify the
implementation of certain language features (e.g.
evaluation order).

• Tends to put emphasis on syntax (rather than
semantics) of the language.

Denotational Semantics

• Meaning of a program can be determined from the
meaning of its parts.

• Unlike an operational semantics, a denotational
semantics emphasizes what the meaning of a
phrase is, not how the phrase is evaluated.

Denotational Semantics

• Consists of three parts:

• Syntactic Algebra

• Semantic Algebra

• Meaning Function

Syntactic Algebra

• Describes abstract syntax of the language.

• Can be specified by a grammar.

Semantic Algebra
• Models the meaning of program phrases.

• Consists of a collection of semantic domains along
with functions that manipulate these domains.

• The meaning of a program may be as simple as an
element of a primitive semantic domain like Int, the
domain of integers.

• More typically, the meaning of a program is an element
of a function domain that maps context domains to
an answer domain.

Context Domains

• Denotational analogue of state components.

• Model such entities as name/value associations,
contents of memory, and control information.

Answer Domains

• Represent the possible meanings of programs.

• Include components that model context
information that was transformed.

Meaning Function
• Maps elements of the syntactic algebra (i.e.,

nodes in the abstract syntax trees) to their
meanings in the semantic algebra.

• Usually a collection of so-called valuation
functions, one for each syntactic domain defined
by the abstract syntax for the language.

• The function must be a homomorphism between
the syntactic algebra and the semantic algebra.

Meaning Function
Suppose M is a meaning function and t is a node in an abstract
syntax tree, with children t1, . . . , tk. Then

(M t) = (ft (M t1) ... (M tk)) 

where ft is a function that is determined by the syntactic class of
t.

The reason to restrict meaning functions to homomorphisms is that
their structure-preserving behavior greatly simplifies
reasoning.

Denotational Semantics
Game

116 Chapter 4 Denotational Semantics

Syntactic
 Algebra

Semantic
 Algebra

 Meaning
 Function
(Homomorphism)

(M q)

(M p)

(M r)

t M

M

M

M
r

q

p

t(f (M p) (M q) (M r))

Figure 4.1 The denotational semantics “game board.”

This is just the technical condition that constrains the meaning of an abstract
syntax tree node to be determined from the meaning of its subnodes. It can
be stated more formally as follows:

Suppose M is a meaning function and t is a node in an abstract syntax
tree, with children t1, . . . , tk. Then

(M t) must equal (ft (M t1) . . . (M tk))

where ft is a function that is determined by the syntactic class of t.

The reason to restrict meaning functions to homomorphisms is that their
structure-preserving behavior greatly simplifies reasoning. This design choice
accounts for a property of denotational semantics we call compositionality
that is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts.” A key consequence of compositionality is that the
meaning of a program remains the same when one of its phrases is replaced by
another phrase with the same meaning.

Compositionality also facilitates the implementation of programming lan-
guages. The core syntactic processing procedures of interpreters and translators
based on denotational semantics have a natural recursive structure that mimics
the recursive structure of the valuation functions and the abstract syntax trees
they manipulate. For example, parser generators like Yacc [Joh75] allow grammar
descriptions to specify semantic actions that are performed when an abstract
syntax tree node is recognized during the parsing of a program. Typically, these

Expression Language

Syntax

Programming Language Theory, week 11

1 Lecture

1.1 Foundations

In mathematics, the meaning of the equals sign is that the object on its left-
hand side is actually the same object as the one on its right-hand side. As a
result, any condition that holds true for the left-hand side object also holds true
for the right-hand side one (and vice versa).

In particular:

�x.y = �z.y �z.y[y 7! x] = �z.x

�x.y[y 7! x] = �z.x
(1)

1.2 Operational Semantics

• Usually well suited for reasoning about whole programs, less than ideal
for reasoning about program fragments.

• Sometimes tends to overspecify the implementation of certain language
features (e.g. evaluation order).

• Tends to put emphasis on syntax (rather than semantics) of the language.

1.3 Denotational Semantics of Expression Language

1.3.1 Syntax

Expr ::= Num |
4Expr |
Expr � Expr

(2)

1.3.2 Semantics

Semantic domain: N .

JnK = n (3)

J4eK = J4K(JeK) (4)

J4K = �x.� x (i.e. unary minus) (5)

Je1 � e2K = J�K(Je1K, Je2K) (6)

J�K = �x, y.x+ y (i.e. plus) (7)

1

Semantics

Programming Language Theory, week 11

1 Lecture

1.1 Foundations

In mathematics, the meaning of the equals sign is that the object on its left-
hand side is actually the same object as the one on its right-hand side. As a
result, any condition that holds true for the left-hand side object also holds true
for the right-hand side one (and vice versa).

In particular:

�x.y = �z.y �z.y[y 7! x] = �z.x

�x.y[y 7! x] = �z.x
(1)

1.2 Operational Semantics

• Usually well suited for reasoning about whole programs, less than ideal
for reasoning about program fragments.

• Sometimes tends to overspecify the implementation of certain language
features (e.g. evaluation order).

• Tends to put emphasis on syntax (rather than semantics) of the language.

1.3 Denotational Semantics of Expression Language

1.3.1 Syntax

Expr ::= Num |
4Expr |
Expr � Expr

(2)

1.3.2 Semantics

Semantic domain: N .

JnK = n (3)

J4eK = J4K(JeK) (4)

J4K = �x.� x (i.e. unary minus) (5)

Je1 � e2K = J�K(Je1K, Je2K) (6)

J�K = �x, y.x+ y (i.e. plus) (7)

1

Logic Formulae
Language

SyntaxProgramming Language Theory, week 11

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

Formula ::= true |
false |
¬Formula |
Formula BinaryConnective Formula

BinaryConnective ::= ^ | _

(8)

1.4.2 Semantics

Semantic domain: {0, 1}.

JtrueK = 1 (9)

JfalseK = 0 (10)

J¬fK = J¬K(JfK) (11)

J¬K = �x.1� x (12)

Jf1 c f2K = JcK(Jf1K, Jf2K) (c 2 BinaryConnective) (13)

J^K = �x, y.x · y (14)

J_K = �x, y.(x+ y)� (x · y) (15)

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

RegExp ::= ; |
✏ |
A |
RegExp⇤ |
RegExp BinOp RegExp

BinOp ::= + | ·

(16)

where A is a predefined set of characters (alphabet).

2

Semantics

Programming Language Theory, week 11

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

Formula ::= true |
false |
¬Formula |
Formula BinaryConnective Formula

BinaryConnective ::= ^ | _

(8)

1.4.2 Semantics

Semantic domain: {0, 1}.

JtrueK = 1 (9)

JfalseK = 0 (10)

J¬fK = J¬K(JfK) (11)

J¬K = �x.1� x (12)

Jf1 c f2K = JcK(Jf1K, Jf2K) (c 2 BinaryConnective) (13)

J^K = �x, y.x · y (14)

J_K = �x, y.(x+ y)� (x · y) (15)

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

RegExp ::= ; |
✏ |
A |
RegExp⇤ |
RegExp BinOp RegExp

BinOp ::= + | ·

(16)

where A is a predefined set of characters (alphabet).

2

Semantics

Programming Language Theory, week 11

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

Formula ::= true |
false |
¬Formula |
Formula BinaryConnective Formula

BinaryConnective ::= ^ | _

(8)

1.4.2 Semantics

Semantic domain: {0, 1}.

JtrueK = 1 (9)

JfalseK = 0 (10)

J¬fK = J¬K(JfK) (11)

J¬K = �x.1� x (12)

Jf1 c f2K = JcK(Jf1K, Jf2K) (c 2 BinaryConnective) (13)

J^K = �x, y.x · y (14)

J_K = �x, y.(x+ y)� (x · y) (15)

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

RegExp ::= ; |
✏ |
A |
RegExp⇤ |
RegExp BinOp RegExp

BinOp ::= + | ·

(16)

where A is a predefined set of characters (alphabet).

2

Regular Expressions

Syntax

Programming Language Theory, week 11

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

Formula ::= true |
false |
¬Formula |
Formula BinaryConnective Formula

BinaryConnective ::= ^ | _

(8)

1.4.2 Semantics

Semantic domain: {0, 1}.

JtrueK = 1 (9)

JfalseK = 0 (10)

J¬fK = J¬K(JfK) (11)

J¬K = �x.1� x (12)

Jf1 c f2K = JcK(Jf1K, Jf2K) (c 2 BinaryConnective) (13)

J^K = �x, y.x · y (14)

J_K = �x, y.(x+ y)� (x · y) (15)

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

RegExp ::= ; |
✏ |
A |
RegExp⇤ |
RegExp BinOp RegExp

BinOp ::= + | ·

(16)

where A is a predefined set of characters (alphabet).

2

SemanticsProgramming Language Theory, week 11

1.5.2 Semantics

Semantic domain: A⇤.

J;K = {} (17)

J✏K = {✏} (18)

JaK = {a} (19)

Je⇤K = J⇤K(JeK) (20)

J⇤K = �L.{l1 · . . . · ln|n 2 N ^ l
i

2 L} (note: including ✏) (21)

Je1 o e2K = JoK(Je1K, Je2K) (o 2 BinOp) (22)

J+K = [(23)

J·K = �A,B.{a · b|a 2 A ^ b 2 B} (24)

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

Expr ::= X |
�X.Expr |
Expr Expr

(25)

1.6.2 Semantics

Semantic domains: env = string ! function, fcn = fcn ! fcn; notational
conventions e 2 env, f, f 0 2 fcn,E,E0 2 Expr

JxK = �e.e(x) (26)

J�x.EK = �e.�p.JEK(e[x 7! p]) (27)

JE1 E2K = �e.(JE1K(e))(JE2K(e)) (28)

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

• selection �: �
age>=18,

• projection ⇡: ⇡
name,age

,

• union [, intersection \ and di↵erence \ and

• cross-product ⇥.

3

Semantics

Programming Language Theory, week 11

1.5.2 Semantics

Semantic domain: A⇤.

J;K = {} (17)

J✏K = {✏} (18)

JaK = {a} (19)

Je⇤K = J⇤K(JeK) (20)

J⇤K = �L.{l1 · . . . · ln|n 2 N ^ l
i

2 L} (note: including ✏) (21)

Je1 o e2K = JoK(Je1K, Je2K) (o 2 BinOp) (22)

J+K = [(23)

J·K = �A,B.{a · b|a 2 A ^ b 2 B} (24)

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

Expr ::= X |
�X.Expr |
Expr Expr

(25)

1.6.2 Semantics

Semantic domains: env = string ! function, fcn = fcn ! fcn; notational
conventions e 2 env, f, f 0 2 fcn,E,E0 2 Expr

JxK = �e.e(x) (26)

J�x.EK = �e.�p.JEK(e[x 7! p]) (27)

JE1 E2K = �e.(JE1K(e))(JE2K(e)) (28)

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

• selection �: �
age>=18,

• projection ⇡: ⇡
name,age

,

• union [, intersection \ and di↵erence \ and

• cross-product ⇥.

3

Lambda Calculus

Syntax

Programming Language Theory, week 11

1.5.2 Semantics

Semantic domain: A⇤.

J;K = {} (17)

J✏K = {✏} (18)

JaK = {a} (19)

Je⇤K = J⇤K(JeK) (20)

J⇤K = �L.{l1 · . . . · ln|n 2 N ^ l
i

2 L} (note: including ✏) (21)

Je1 o e2K = JoK(Je1K, Je2K) (o 2 BinOp) (22)

J+K = [(23)

J·K = �A,B.{a · b|a 2 A ^ b 2 B} (24)

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

Expr ::= X |
�X.Expr |
Expr Expr

(25)

1.6.2 Semantics

Semantic domains: env = string ! function, fcn = fcn ! fcn; notational
conventions e 2 env, f, f 0 2 fcn,E,E0 2 Expr

JxK = �e.e(x) (26)

J�x.EK = �e.�p.JEK(e[x 7! p]) (27)

JE1 E2K = �e.(JE1K(e))(JE2K(e)) (28)

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

• selection �: �
age>=18,

• projection ⇡: ⇡
name,age

,

• union [, intersection \ and di↵erence \ and

• cross-product ⇥.

3

 Semantics

Programming Language Theory, week 11

1.5.2 Semantics

Semantic domain: A⇤.

J;K = {} (17)

J✏K = {✏} (18)

JaK = {a} (19)

Je⇤K = J⇤K(JeK) (20)

J⇤K = �L.{l1 · . . . · ln|n 2 N ^ l
i

2 L} (note: including ✏) (21)

Je1 o e2K = JoK(Je1K, Je2K) (o 2 BinOp) (22)

J+K = [(23)

J·K = �A,B.{a · b|a 2 A ^ b 2 B} (24)

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

Expr ::= X |
�X.Expr |
Expr Expr

(25)

1.6.2 Semantics

Semantic domains: env = string ! function, fcn = fcn ! fcn; notational
conventions e 2 env, f, f 0 2 fcn,E,E0 2 Expr

JxK = �e.e(x) (26)

J�x.EK = �e.�p.JEK(e[x 7! p]) (27)

JE1 E2K = �e.(JE1K(e))(JE2K(e)) (28)

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

• selection �: �
age>=18,

• projection ⇡: ⇡
name,age

,

• union [, intersection \ and di↵erence \ and

• cross-product ⇥.

3

