
Lambda Calculus
A4M36TPJ, 2013/2014

Lambda Calculus
• Developed to study effectively computable functions.

• Introduced in 1930 by Alonzo Church.

• Smallest universal programming language

• Any computable function can be expressed and
evaluated using Lambda Calculus => Equivalent to
Turing Machines.

• Became a strong theoretical foundation for the family
of functional programming languages.

Expressions

<expression> := <name> | <function> | <application>

<function> := λ <name>.<expression>

<application> := <expression><expression>

Evaluation

• Expression can be surrounded with parenthesis for
clarity.

• If E is an expression, (E) is the same expression.

• Function application associates from the left.

• E1E2E3E4…En is evaluated as (…(((E1E2)E3)E4)…En)

Lambda Expression

• Lambda expression is an anonymous function
definition.

λx.x

Application
• Functions can be applied to other expression. Here is an

example application:

(λx.x)y
• The identity function is applied to y.

• To apply the function we do the following substitution:

(λx.x)y = [y/x]x = y
• [y/x] means that all occurrences of x are substituted by y in the

expression to the right.

Lambda Expression
Arguments

• The name of the arguments in function definitions
do not carry any meaning in themselves.

• They are just “placeholders”. Therefore:

λx.x ≡ λy.y ≡ λz.z ≡ λt.t

• A ≡ B means that A is a synonym of B

Free and Bound Variables

• In the function λx.x we say that x is “bound” since
its occurrence in the body is preceded by λx.

• A name not preceded by λ is called “free”.

(λx.xy)

(λx.x)(λy.yx)

Free Variables
• Variable is free in an expression if one of the

following three cases holds:

• <name> is free in <name>.

• <name> is free in λ<name1>.<exp> if the
identifier <name>≠<name1> and <name> is free
in <exp>.

• <name> is free in E1E2 if <name> is free in E1 or
if it is free in E2.

Bound Variables
• A variable <name> is bound if one of two cases

holds:

• <name> is bound in λ<name1>.<exp> if the
identifier <name> = <name1> or if <name> is
bound in <exp>.

• <name> is bound in E1E2 if <name> is bound in
E1 or if it is bound in E2.

Free and Bound Variables

• The same identifier can occur free and bound in
the same expression:

(λx.xz)(λz.z)

Substitutions
• In λ-calculus we do not give names to functions.

• To simplify the notation we will use capital letters,
digits and other symbols as synonyms for some
function definitions.

• For example I is a synonym for (λx.x)

II ≡ (λx.x)(λx.x)

II ≡ (λx.x)(λz.z) ≡ I

Substitutions
• Avoid mixing up free occurrences of an identifier

with bound ones.

(λx.(λy.xy))y

• Incorrect result is:

(λy.yy)

• Why?

Substitutions

• If the function λx.exp is applied to E, we substitute
all free occurrences of x in exp with E.

• We rename the bound variable of the same name
in exp before substitution.

• Variable names are only “placeholders” in λ-
calculus, they are not important.

Substitutions
(λx.(λy.(x(λx.xy))))y

In this expression we associate the argument x with y. In the body:

(λy.(x(λx.xy)))

only first x is free and can be substituted. Before substituting we
rename the variable y to avoid mixing its free and its bound
occurrences.

[y/x](λt.(x(λx.xt))) = (λt.(y(λx.xt)))

Arithmetic
• We expect from a programming language that it

should be capable of doing arithmetical
calculations.

• Numbers in λ-calculus can be represented as in
Peano axioms starting from zero.

• suc(zero) to represent “1”, suc(suc(zero)) to
represent “2” and so on.

Arithmetic
• Zero can be represented as (λs.(λz.z)) or abbreviated

(λsz.z).

• Then we can define:

1 ≡ λsz.s(z)

2 ≡ λsz.s(s(z))

3 ≡ λsz.s(s(s(z)))

…

Successor Function
• The function applied to “0” returns “1”, applied to “1” returns

“2” and so on.

S ≡ λwyx.y(wyx)

• This function applied to our representation of zero yields:

S0 ≡ (λwyx.y(wyx))(λsz.z)

λyx.y((λsz.z)yx) = λyx.y((λz.z)x) = λyx.y(x) ≡ 1

S1 ≡ (λwyx.y(wyx))(λsz.s(z)) = λyx.y((λsz.s(z))yx) = λyx.y(y(x)) ≡ 2

Addition

• Addition can be obtained immediately by noting
that the body sz of our definition of the number 1.

• If we want to add say 2 and 3, we just apply the
successor function two times to 3.

2S3 ≡ (λsz.s(sz))(λwyx.y(wyx))(λuv.u(u(uv)))
(λwyx.y((wy)x))((λwyx.y((wy)x))(λuv.u(u(uv)))) ≡ SS3

Multiplication

(λxyz.x(yz))

(λxyz.x(yz))22

Conditionals

• We define two functions True:

T ≡ λxy.x

• and False:

F ≡ λxy.y

Logical Operations
• The AND function of two arguments can be defined as

∧ ≡ λxy.xy(λuv.v) ≡ λxy.xyF

• The OR function of two arguments can be defined as

∨ ≡ λxy.x(λuv.u)y ≡ λxy.xTy

• Negation of one argument can be defined as

¬ ≡ λx.x(λuv.v)(λab.a) ≡ λx.xFT

• The negation function applied to “true” is

¬T ≡ λx.x(λuv.v)(λab.a)(λcd.c)

• which reduces to

TFT ≡ (λcd.c)(λuv.v)(λab.a) = (λuv.v) ≡ F

Conditional Test
• It is very convenient in a programming language to have a function

which is true if a number is zero and false otherwise.

Z ≡ λx.xF¬F

• To understand how this function works, note that

0 f a ≡ (λsz.z)fa = a

• that is, the function f applied zero times to the argument a yields a.
On the other hand, F applied to any argument yields the identity
function

F a ≡ (λxy.y)a = λy.y ≡ I

Conditional Test
• We can now test if the function Z works correctly. The function

applied to zero yields

Z0 ≡ (λx.xF¬F)0 = 0F¬F = ¬F = T

• because F applied 0 times to ¬ yields ¬. The function Z applied to
any other number N yields

ZN ≡ (λx.xF¬F)N = NF¬F

• The function F is then applied N times to ¬. But F applied to
anything is the identity, so that the above expression reduces for any
number N greater than zero to

IF = F

Recursion
• Recursive functions can be defined in the λ calculus using a function

which calls a function y and then regenerates itself. This can be better
understood by considering the following function Y:

Y ≡ (λy.(λx.y(xx))(λx.y(xx)))

• This function applied to a function R yields:

YR = (λx.R(xx))(λx.R(xx))

• which further reduced yields:

R((λx.R(xx))(λx.R(xx))))

• but this means that YR = R(YR), that is, the function R is evaluated using
the recursive call YR as the first argument.

