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Lambda Calculus
• Developed to study effectively computable functions. 

• Introduced in 1930 by Alonzo Church. 

• Smallest universal programming language 

• Any computable function can be expressed and 
evaluated using Lambda Calculus => Equivalent to 
Turing Machines. 

• Became a strong theoretical foundation for the family 
of functional programming languages.



Expressions

<expression> := <name> | <function> | <application> 

<function> := λ <name>.<expression> 

<application> := <expression><expression>



Evaluation

• Expression can be surrounded with parenthesis for 
clarity. 

• If E is an expression, (E) is the same expression. 

• Function application associates from the left. 

• E1E2E3E4…En is evaluated as (…(((E1E2)E3)E4)…En)



Lambda Expression

• Lambda expression is an anonymous function 
definition. 

λx.x



Application
• Functions can be applied to other expression. Here is an 

example application: 

(λx.x)y 
• The identity function is applied to y. 

• To apply the function we do the following substitution: 

(λx.x)y = [y/x]x = y 
• [y/x] means that all occurrences of x are substituted by y in the 

expression to the right.



Lambda Expression 
Arguments

• The name of the arguments in function definitions 
do not carry any meaning in themselves. 

• They are just “placeholders”. Therefore: 

λx.x ≡ λy.y ≡ λz.z ≡ λt.t 

• A ≡ B means that A is a synonym of B



Free and Bound Variables

• In the function λx.x we say that x is “bound” since 
its occurrence in the body is preceded by λx. 

• A name not preceded by λ is called “free”. 

(λx.xy) 

(λx.x)(λy.yx)



Free Variables
• Variable is free in an expression if one of the 

following three cases holds: 

• <name> is free in <name>. 

• <name> is free in λ<name1>.<exp> if the 
identifier <name>≠<name1> and <name> is free 
in <exp>. 

• <name> is free in E1E2 if <name> is free in E1 or 
if it is free in E2.



Bound Variables
• A variable <name> is bound if one of two cases 

holds: 

• <name> is bound in  λ<name1>.<exp> if the 
identifier <name> = <name1> or if <name> is 
bound in <exp>. 

• <name> is bound in E1E2 if <name> is bound in 
E1 or if it is bound in E2.



Free and Bound Variables

• The same identifier can occur free and bound in 
the same expression: 

(λx.xz)(λz.z)



Substitutions
• In λ-calculus we do not give names to functions. 

• To simplify the notation we will use capital letters, 
digits and other symbols as synonyms for some 
function definitions. 

• For example I is a synonym for (λx.x) 

II  ≡ (λx.x)(λx.x) 

II ≡ (λx.x)(λz.z) ≡ I



Substitutions
• Avoid mixing up free occurrences of an identifier 

with bound ones. 

(λx.(λy.xy))y 

• Incorrect result is: 

(λy.yy) 

• Why?



Substitutions

• If the function λx.exp is applied to E, we substitute 
all free occurrences of x in exp with E. 

• We rename the bound variable of the same name 
in exp before substitution. 

• Variable names are only “placeholders” in λ-
calculus, they are not important.



Substitutions
(λx.(λy.(x(λx.xy))))y 

In this expression we associate the argument x with y. In the body: 

(λy.(x(λx.xy))) 

only first x is free and can be substituted. Before substituting we 
rename the variable y to avoid mixing its free and its bound 
occurrences. 

[y/x](λt.(x(λx.xt))) = (λt.(y(λx.xt))) 

  



Arithmetic
• We expect from a programming language that it 

should be capable of doing arithmetical 
calculations. 

• Numbers in λ-calculus can be represented as in 
Peano axioms starting from zero. 

• suc(zero) to represent “1”, suc(suc(zero)) to 
represent “2” and so on.



Arithmetic
• Zero can be represented as (λs.(λz.z)) or abbreviated 

(λsz.z). 

• Then we can define: 

1 ≡ λsz.s(z) 

2 ≡ λsz.s(s(z)) 

3 ≡ λsz.s(s(s(z))) 

…



Successor Function
• The function applied to “0” returns “1”, applied to “1” returns 

“2” and so on. 

S ≡ λwyx.y(wyx) 

• This function applied to our representation of zero yields: 

S0 ≡ (λwyx.y(wyx))(λsz.z) 

λyx.y((λsz.z)yx) = λyx.y((λz.z)x) = λyx.y(x) ≡ 1 

S1 ≡ (λwyx.y(wyx))(λsz.s(z)) = λyx.y((λsz.s(z))yx) = λyx.y(y(x)) ≡ 2



Addition

• Addition can be obtained immediately by noting 
that the body sz of our definition of the number 1. 

• If we want to add say 2 and 3, we just apply the 
successor function two times to 3. 

2S3 ≡ (λsz.s(sz))(λwyx.y(wyx))(λuv.u(u(uv)))
(λwyx.y((wy)x))((λwyx.y((wy)x))(λuv.u(u(uv)))) ≡ SS3



Multiplication

(λxyz.x(yz)) 

(λxyz.x(yz))22



Conditionals

• We define two functions True: 

T ≡ λxy.x 

• and False: 

F ≡ λxy.y



Logical Operations
• The AND function of two arguments can be defined as 

∧ ≡ λxy.xy(λuv.v) ≡ λxy.xyF  

• The OR function of two arguments can be defined as 

∨ ≡ λxy.x(λuv.u)y ≡ λxy.xTy  

• Negation of one argument can be defined as 

¬ ≡ λx.x(λuv.v)(λab.a) ≡ λx.xFT  

• The negation function applied to “true” is 

¬T ≡ λx.x(λuv.v)(λab.a)(λcd.c) 

• which reduces to 

TFT ≡ (λcd.c)(λuv.v)(λab.a) = (λuv.v) ≡ F



Conditional Test
• It is very convenient in a programming language to have a function 

which is true if a number is zero and false otherwise. 

Z ≡ λx.xF¬F 

• To understand how this function works, note that 

0 f a ≡ (λsz.z)fa = a 

• that is, the function f applied zero times to the argument a yields a. 
On the other hand, F applied to any argument yields the identity 
function 

F a ≡ (λxy.y)a = λy.y ≡ I



Conditional Test
• We can now test if the function Z works correctly. The function 

applied to zero yields 

Z0 ≡ (λx.xF¬F)0 = 0F¬F = ¬F = T 

• because F applied 0 times to ¬ yields ¬. The function Z applied to 
any other number N yields 

ZN ≡ (λx.xF¬F)N = NF¬F 

• The function F is then applied N times to ¬. But F applied to 
anything is the identity, so that the above expression reduces for any 
number N greater than zero to  

IF = F



Recursion
• Recursive functions can be defined in the λ calculus using a function 

which calls a function y and then regenerates itself. This can be better 
understood by considering the following function Y: 

Y ≡ (λy.(λx.y(xx))(λx.y(xx))) 

• This function applied to a function R yields: 

YR = (λx.R(xx))(λx.R(xx)) 

• which further reduced yields: 

R((λx.R(xx))(λx.R(xx)))) 

• but this means that YR = R(YR), that is, the function R is evaluated using 
the recursive call YR as the first argument.


