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| ambda Calculus

Developed to study effectively computable functions.
Introduced in 1930 by Alonzo Church.
Smallest universal programming language

Any computable function can be expressed and
evaluated using Lambda Calculus => Equivalent to
Turing Machines.

Became a strong theoretical foundation for the family
of functional programming languages.



EXPressions

<expression> .= <name> | <function> | <application>
<function> := A <name>.<expression>

<application> := <expression><expression>



Evaluation

Expression can be surrounded with parenthesis for
clarity.

e |f Eis an expression, (E) is the same expression.
Function application associates from the left.

 E1EoE3E4...Enis evaluated as (...(((E1E2)E3)E4)...En)



| ambda Expression

 Lambda expression is an anonymous function
definition.

AX. X



Application

Functions can be applied to other expression. Here is an
example application:

(AX.X)Y

The identity function is applied to y.

To apply the function we do the following substitution:

(AX.X)y = [y/X]x =y

[y/x] means that all occurrences of x are substituted by y in the
expression to the right.



. ambda Expression
Arguments

 The name of the arguments in function definitions
do not carry any meaning in themselves.

* They are just “placeholders”. Therefore:
AX.X =AYy = AZ2.Zz = At

« A =B meansthat Ais asynonym of B



Free and Bounad Variables

* |n the function Ax.x we say that x is “bound” since
its occurrence In the body Is preceded by AX.

* A name not preceded by A is called “free”.

(AX.XY)

(AX.X)(AY.yX)



Free Variables

e Variable is free in an expression if one of the
following three cases holds:

e <name> Is free in <name>.
e <name> Is free in A<name1>.<exp> If the
identifier <name>=<namei> and <name> Is free

N <exp>.

e <name> Is free in E1E21f <name> Is free In £7 or
if it i1s free In Eo.



Bound Variables

e A variable <name> is bound If one of two cases
holds:

e <name> is bound in A<namei>.<exp> Iif the
identifier <name> = <namei> or iIf <name> Is
bound In <exp>.

e <name> IS bound in E1E2 1T <name> IS bound In
Esorifitis bound in Ex.



Free and Bounad Variables

e The same identifier can occur free and bound In
the same expression:

(AX.XZ)(Az.Z)



Substitutions

* In A-calculus we do not give names to functions.

* Jo simplify the notation we will use capital letters,

digits and other symbols as synonyms for some
function definitions.

* For example | is a synonym for (AX.x)
Il = (AX.X)(AX.X)

Il = (AX.X)(Az.Z) = |



Substitutions

* Avoid mixing up free occurrences of an identitier
with bound ones.

(AX.(AY.XY))y

e |ncorrect result Is:

(AY.yy)
e Why?



Substitutions

e |f the function Ax.exp is applied to E, we substitute
all free occurrences of x in exp with E.

e \We rename the bound variable of the same name
N exp betore substitution.

e Variable names are only “placeholders™ in A-
calculus, they are not important.



Substitutions

(AX-(AY.(X(AX.XY))))y

In this expression we associate the argument x with y. In the body:

(AY.(X(AX.xy)))

only first x is free and can be substituted. Before substituting we
rename the variable y to avoid mixing its free and its bound
occurrences.

[V/X](AL.(X(Ax.xt))) = (At.(y(Ax.xt)))



Arithmetic

 We expect from a programming language that it
should be capable of doing arithmetical
calculations.

* Numbers in A-calculus can be represented as in
Peano axioms starting from zero.

e suc(zero) to represent “17, suc(suc(zero)) to
represent “2" and so on.



Arithmetic

e /Zero can be represented as (As.(Az.z)) or abbreviated
(ASZz.2).

* Then we can define:
1 = Asz.s(z)
2 = A\sz.s(s(2))

3 = Asz.s(s(s(z)))



Successor Function

* The function applied to “0” returns “17, applied to “1” returns
"2" and so on.

S = AWyX.y(wyx)
e This function applied to our representation of zero yields:
SO = (Awyx.y(wyx))(Asz.z)
AYX.Y((ASZ.2)yX) = AyX.Y((AZ.Z)X) = AyX.y(X) = 1

S1 = (Awyx.y(wyx))(Asz.s5(z)) = Ayx.y((AsSz.5(2))yx) = AyX.y(y(X)) = 2



Addition

* Addition can be obtained immediately by noting
that the body sz of our definition of the number 1.

e |f we want to add say 2 and 3, we just apply the
successor function two times to 3.

253 = (ASz.5(sz))(Awyx.y(wyx))(Auv.u(u(uv)))
(Awyx.y((wy)x))((Awyx.y((wy)x))(Auv.u(u(uv)))) = SS3



Multiplication

(AXYZ.X(yZz))
(AXYZ.X(yZz))22



Conditionals

e \We define two functions True:
T = Axy.X
e and False;

F = AXy.y



|_ogical Operations

The AND function of two arguments can be defined as
A = AXY.XY(AUV.V) = Axy.XyF
The OR function of two arguments can be defined as
v = AXY.X(AUV.U)Y = AXy.XTy
Negation of one argument can be defined as
- = AX.X(AUV.V)(Aab.a) = AX.XFT
The negation function applied to “true” is

=T = Ax.x(Auv.v)(Aab.a)(Acd.c)

which reduces to

F

TFT = (Acd.c)(Auv.v)(Aab.a) = (Auv.v)



Conditional Test

* |t is very convenient in a programming language to have a function
which is true if a number is zero and false otherwise.

/ = N XF=F
* To understand how this function works, note that
Ofa=(Asz.z)fa=a
e that is, the function f applied zero times to the argument a yields a.
On the other hand, F applied to any argument yields the identity

function

Fa=(Axyy)a=Ayy = |



Conditional Test

 We can now test if the function Z works correctly. The function
applied to zero yields

70 = (A\XXF=F)0 = OF=F = =F = T

* because F applied 0 times to - yields —. The function Z applied to
any other number N yields

ZN = (\.XF=F)N = NF-F

e The function F is then applied N times to —. But F applied to
anything is the identity, so that the above expression reduces for any
number N greater than zero to

F=F



Recursion

Recursive functions can be defined in the A calculus using a function
which calls a function y and then regenerates itself. This can be better
understood by considering the following function Y:

Y = (AY.(AXY(XX))(AX.y(Xx)))
This function applied to a function R yields:
YR = (AX.R(xX))(AX.R(xx))
which further reduced yields:
R((AX.R(xx))(Ax.R(xx))))

but this means that YR = R(YR), that is, the function R is evaluated using
the recursive call YR as the first argument.



