Semantics Properties

AAM36TPJ, 2013/2014



Global Properties of a
Programming Language

universality: the language can express all computable
programs;

determinism: the set of possible outcomes from executing a
program on any particular inputs is a singleton;

strong normalization: all programs are guaranteed to
terminate on all inputs (i.e., it is not possible to express an
infinite loop);

static checkability: a class of program errors can be found
by static analysis without resorting to execution;

referential transparency: different occurrences of an
expression within the same context always have the same
meaning.



SOS Formal Definition

S=<CF,=,FC,IF,OF >

e ('F' is a set of configurations,

e —- is a binary relation over configurations (=C C'F x CF),
e F'C is a set of final configurations (FC C CF),

e [F': Program x Input — CF' is an input function and

o OF : FC — Output is an output tunction.



Syntax

Expr ::= Num |
Bool |
NFExpr |
Expr ® Expr |
if Expr then Expr else Expr

where Num is a predefined set of integer numbers (a.k.a. Z) and Bool is a
predefined set of boolean values.

Convention: e,e’,--- € Expr, n,n’ € Num, b,b' € Bool, v € Num U Bool
and t € { Number, Boolean}.



Type System

= n : Number

~ b : Boolean

= e : Number
= Ae : Number

e : Number F e : Number

e ®e : Number

—e: Boolean Feée' :t Fe':t

— if e then e’ else e’ :t



BOS

n+— n
Y e — true e — v
—> :
if e then €’ else e’ +— v
e—n
ANe > —m e — false €’ —wv

if e then ¢’ else e’ — v
e—n e —n'

ee —=n+n




SOS

AN ~> —n

e ~ e

ANe ~~ Ne’

non ~n-+n

e ~ e

6@6//W€/®6//

6/ S 6//

eHe ~ee




SOS

if true then e’ else e/’ ~~ ¢

if false then e’ else e’ ~» e

e ~~ 6///

/77

if e then € else e’ ~~ if e’/ then e’ else ¢e”

6/ S 6///

if e then €' else €’ ~~ if e then €'’ else ¢e”

/! /7
e ~~ €

if e then € else e’ ~~ if e then € else e



Normal Form

* Anirreducible configuration is also called a normal
form:.

 Each normal form is either a final contiguration or a
stuck state.



Stuck States

e Stuck States have no output according to output
function.

o Stuck states include Cycling, Intinite Semantics,
more than one normal form.




Confluence

A relation R C A x A is confluent iff
Val, as,03 < A:a1R*as Na1 R as = dayg € A:aoR*as N asR*ay4.

i
% %
a ds

R¥-. R
a4 a
a4



Confluence

* A contluent transition relation guarantees a unique
final configuration. Why*

* |Indeed, It guarantees a unique irreducible
configuration. Why?

* Confluence does not guarantee a single outcome?
Why?



O
Nnfluenc
o

(N\\\’l\ ,Q\\)s\’b AN
‘ 6\0\&\‘“‘)\\\6 :\\:\\
A



Strongly Normalising

Relation

* A strongly normalising (or terminating) transition

relation prod

uces normal form via every path. A

weakly normalising transition relation produces
normal form via at least one path.

e Well-typed p
cases (unive
mix well), we

‘ograms don't get stuck. In special
rsality and strong normalisation don't
| typed programs also always

terminate, I1.e. they always produce an output value.



Semantics Equivalence

Ve € Expr: er—n & e ~" n.



lType Preservation

Ve,e' € Expr: (Fe:t)ANe~e = (Fe' :t).



Progress

Ve € Expr: (Fe:t) = e € (NumU Bool)V 3e' € Expr: e ~ €.



Termination

Can be proved many ways.
We show the proof based on the Energy function.

First we define Energy function for basic
expressions.

For more detalls see Turbak et al.



Termination

energy(v)::
energy(Ae) = 1+ energy(e),
energy(e ® e') = _——energy(e)-—energyﬁi),
energy(if e then e’ else €' = 1+ energy(e) + energy(e’)
/11

),

+ energy(e



Termination

Ve € Expr: energy(e) € N and

Ve,e' € Expr: e ~ e = energy(e) > energy(e’).



Determinism

* A programming language is deterministic if there is
exactly one possible outcome for any pair of
program and Inputs.

Vu,v" € (Num U Bool): Ve € Expr: e ~*vAe~*v =v=1"



