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Computable Functions
• Computable functions are the basic objects of study in 

computability theory.  

• Computable functions are the formalized analogue of the 
intuitive notion of algorithm. 

• Every computable function has a finite procedure giving 
explicit, unambiguous instructions on how to compute it. 

• This procedure has to be encoded in the finite alphabet used 
by the computational model, so there are only countably 
many computable functions. For example, functions may 
be encoded using a string of bits (the alphabet Σ = {0, 1} ).



Uncomputable

• The real numbers are uncountable so most real 
numbers are not computable. 

• Every computable number is definable, but not 
vice versa. There are many definable, 
noncomputable real numbers. 

• Example: Binary representation of halting problem



Procedure for Computing a 
Computable Function

• There must be exact instructions (i.e. a program), 
finite in length, for the procedure. 

• If the procedure is given a k-tuple x in the domain of f, 
then after a finite number of discrete steps the 
procedure must terminate and produce f(x). 

• If the procedure is given a k-tuple x which is not in the 
domain of f, then the procedure might go on forever, 
never halting. Or it might get stuck at some point, but it 
must not pretend to produce a value for f at x.



Lambda Calculus
• Developed to study effectively computable functions. 

• Introduced in 1930 by Alonzo Church. 

• Smallest universal programming language

• Any computable function can be expressed and 
evaluated using Lambda Calculus => Equivalent to 
Turing Machines. 

• Became a strong theoretical foundation for the family 
of functional programming languages.



Expressions

<expression> := <name> | <function> | <application> 

<function> := λ <name>.<expression> 

<application> := <expression><expression>



Evaluation

• Expression can be surrounded with parenthesis for 
clarity. 

• If E is an expression, (E) is the same expression. 

• Function application associates from the left. 

• E1E2E3E4…En is evaluated as (…(((E1E2)E3)E4)…En)



Lambda Expression

• Lambda expression is an anonymous function 
definition. 

λx.x



Application
• Functions can be applied to other expression. Here is an 

example application: 

(λx.x)y 
• The identity function is applied to y. 

• To apply the function we do the following substitution: 

(λx.x)y = [y/x]x = y 
• [y/x] means that all occurrences of x are substituted by y in the 

expression to the right.



Lambda Expression 
Arguments

• The name of the arguments in function definitions 
do not carry any meaning in themselves. 

• They are just “placeholders”. Therefore: 

λx.x ≡ λy.y ≡ λz.z ≡ λt.t 

• A ≡ B means that A is a synonym of B



Free and Bound Variables

• In the function λx.x we say that x is “bound” since 
its occurrence in the body is preceded by λx. 

• A name not preceded by λ is called “free”. 

(λx.xy) 

(λx.x)(λy.yx)



Free Variables
• Variable is free in an expression if one of the 

following three cases holds: 

• <name> is free in <name>. 

• <name> is free in λ<name1>.<exp> if the 
identifier <name>≠<name1> and <name> is free 
in <exp>. 

• <name> is free in E1E2 if <name> is free in E1 or 
if it is free in E2.



Bound Variables
• A variable <name> is bound if one of two cases 

holds: 

• <name> is bound in  λ<name1>.<exp> if the 
identifier <name> = <name1> or if <name> is 
bound in <exp>. 

• <name> is bound in E1E2 if <name> is bound in 
E1 or if it is bound in E2.



Free and Bound Variables

• The same identifier can occur free and bound in 
the same expression: 

(λx.xz)(λz.z)



Substitutions
• In λ-calculus we do not give names to functions. 

• To simplify the notation we will use capital letters, 
digits and other symbols as synonyms for some 
function definitions. 

• For example I is a synonym for (λx.x) 

II  ≡ (λx.x)(λx.x) 

II ≡ (λx.x)(λz.z) ≡ I



Substitutions
• Avoid mixing up free occurrences of an identifier 

with bound ones. 

(λx.(λy.xy))y 

• Incorrect result is: 

(λy.yy) 

• Why?



Substitutions

• If the function λx.exp is applied to E, we substitute 
all free occurrences of x in exp with E. 

• We rename the bound variable of the same name 
in exp before substitution. 

• Variable names are only “placeholders” in λ-
calculus, they are not important.



Substitutions
(λx.(λy.(x(λx.xy))))y 

In this expression we associate the argument x with y. In 
the body: 

(λy.(x(λx.xy))) 

only first x is free and can be substituted. Before 
substituting we rename the variable y to avoid mixing 
its free and its bound occurrences. 

[y/x](λt.(x(λx.xt))) = (λt.(y(λx.xt)))



Functions with Multiple 
Arguments

• How to represent functions with multiple arguments 
in λ-calculus? 

• We do not need them. 

• We can use currying to transform functions 

• Given a function f of type: (X × Y) ⟶ Z, currying 
it makes a function curry(f): X ⟶ Y ⟶ Z.



Arithmetic
• We expect from a programming language that it 

should be capable of doing arithmetical 
calculations. 

• Numbers in λ-calculus can be represented as in 
Peano axioms starting from zero. 

• suc(zero) to represent “1”, suc(suc(zero)) to 
represent “2” and so on.



Arithmetic
• Zero can be represented as (λs.(λz.z)) or abbreviated 

(λsz.z). 

• Then we can define: 

1 ≡ λsz.s(z) 

2 ≡ λsz.s(s(z)) 

3 ≡ λsz.s(s(s(z))) 

…



Successor Function
• The function applied to “0” returns “1”, applied to “1” returns 

“2” and so on. 

S ≡ λwyx.y(wyx) 

• This function applied to our representation of zero yields: 

S0 ≡ (λwyx.y(wyx))(λsz.z) 

λyx.y((λsz.z)yx) = λyx.y((λz.z)x) = λyx.y(x) ≡ 1 

S1 ≡ (λwyx.y(wyx))(λsz.s(z)) = λyx.y((λsz.s(z))yx) = λyx.y(y(x)) ≡ 2



Addition

• Addition can be obtained immediately by noting 
that the body sz of our definition of the number 1. 

• If we want to add say 2 and 3, we just apply the 
successor function two times to 3. 

2S3 ≡ (λsz.s(sz))(λwyx.y(wyx))(λuv.u(u(uv)))
(λwyx.y((wy)x))((λwyx.y((wy)x))(λuv.u(u(uv)))) ≡ SS3



Multiplication

(λxyz.x(yz)) 

(λxyz.x(yz))22



Conditionals

• We define two functions True: 

T ≡ λxy.x 

• and False: 

F ≡ λxy.y



Logical Operations
• The AND function of two arguments can be defined as 

∧ ≡ λxy.xy(λuv.v) ≡ λxy.xyF  

• The OR function of two arguments can be defined as 

∨ ≡ λxy.x(λuv.u)y ≡ λxy.xTy  

• Negation of one argument can be defined as 

¬ ≡ λx.x(λuv.v)(λab.a) ≡ λx.xFT  

• The negation function applied to “true” is 

¬T ≡ λx.x(λuv.v)(λab.a)(λcd.c) 

• which reduces to 

TFT ≡ (λcd.c)(λuv.v)(λab.a) = (λuv.v) ≡ F



Conditional Test
• It is very convenient in a programming language to have a function 

which is true if a number is zero and false otherwise. 

Z ≡ λx.xF¬F 

• To understand how this function works, note that 

0 f a ≡ (λsz.z)fa = a 

• that is, the function f applied zero times to the argument a yields a. 
On the other hand, F applied to any argument yields the identity 
function 

F a ≡ (λxy.y)a = λy.y ≡ I



Conditional Test
• We can now test if the function Z works correctly. The function 

applied to zero yields 

Z0 ≡ (λx.xF¬F)0 = 0F¬F = ¬F = T 

• because F applied 0 times to ¬ yields ¬. The function Z applied to 
any other number N yields 

ZN ≡ (λx.xF¬F)N = NF¬F 

• The function F is then applied N times to ¬. But F applied to 
anything is the identity, so that the above expression reduces for any 
number N greater than zero to  

IF = F



Recursion
• Recursive functions can be defined in the λ calculus using a function 

which calls a function y and then regenerates itself. This can be better 
understood by considering the following function Y: 

Y ≡ (λy.(λx.y(xx))(λx.y(xx))) 

• This function applied to a function R yields: 

YR = (λx.R(xx))(λx.R(xx)) 

• which further reduced yields: 

R((λx.R(xx))(λx.R(xx)))) 

• but this means that YR = R(YR), that is, the function R is evaluated using 
the recursive call YR as the first argument.


