Lambda Calculus

A4M36TPJ, 2015/2016

Computable Functions

- Computable functions are the basic objects of study in computability theory.
- Computable functions are the formalized analogue of the intuitive notion of algorithm.
- Every computable function has a finite procedure giving explicit, unambiguous instructions on how to compute it.
- This procedure has to be encoded in the finite alphabet used by the computational model, so there are only countably many computable functions. For example, functions may be encoded using a string of bits (the alphabet $\Sigma=\{0,1\}$).

Uncomputable

- The real numbers are uncountable so most real numbers are not computable.
- Every computable number is definable, but not vice versa. There are many definable, noncomputable real numbers.
- Example: Binary representation of halting problem

Procedure for Computing a Computable Function

- There must be exact instructions (i.e. a program), finite in length, for the procedure.
- If the procedure is given a \mathbf{k}-tuple \mathbf{x} in the domain of f, then after a finite number of discrete steps the procedure must terminate and produce $f(\mathbf{x})$.
- If the procedure is given a \mathbf{k}-tuple \mathbf{x} which is not in the domain of f, then the procedure might go on forever, never halting. Or it might get stuck at some point, but it must not pretend to produce a value for f at \mathbf{x}.

Lambda Calculus

- Developed to study effectively computable functions.
- Introduced in 1930 by Alonzo Church.
- Smallest universal programming language
- Any computable function can be expressed and evaluated using Lambda Calculus => Equivalent to Turing Machines.
- Became a strong theoretical foundation for the family of functional programming languages.

Expressions

<expression> := <name> | <function> | <application>
<function> := λ <name>.<expression>
<application> := <expression><expression>

Evaluation

- Expression can be surrounded with parenthesis for clarity.
- If E is an expression, (E) is the same expression.
- Function application associates from the left.
- $\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4} \ldots \mathrm{E}_{\mathrm{n}}$ is evaluated as $\left(\ldots\left(\left(\left(\mathrm{E}_{1} \mathrm{E}_{2}\right) \mathrm{E}_{3}\right) \mathrm{E}_{4}\right) \ldots \mathrm{E}_{\mathrm{n}}\right)$

Lambda Expression

- Lambda expression is an anonymous function definition.

$$
\lambda x . x
$$

Application

- Functions can be applied to other expression. Here is an example application:

($\lambda x . x) y$

- The identity function is applied to y.
- To apply the function we do the following substitution:

$$
(\lambda x \cdot x) y=[y / x] x=y
$$

- $[y / x]$ means that all occurrences of x are substituted by y in the expression to the right.

Lambda Expression Arguments

- The name of the arguments in function definitions do not carry any meaning in themselves.
- They are just "placeholders". Therefore:

$$
\lambda x \cdot x \equiv \lambda y \cdot y \equiv \lambda z \cdot z \equiv \lambda t \cdot t
$$

- $A \equiv B$ means that A is a synonym of B

Free and Bound Variables

- In the function $\lambda x . x$ we say that x is "bound" since its occurrence in the body is preceded by λx.
- A name not preceded by λ is called "free".

$$
(\lambda x . x y)
$$

$$
(\lambda x \cdot x)(\lambda y . y x)
$$

Free Variables

- Variable is free in an expression if one of the following three cases holds:
- <name> is free in <name>.
- <name> is free in $\lambda<$ name $_{1}>.<\exp >$ if the identifier <name>\#<name ${ }_{1}>$ and <name> is free in <exp>.
- <name> is free in $E_{1} E_{2}$ if <name> is free in E_{1} or if it is free in E_{2}.

Bound Variables

- A variable <name> is bound if one of two cases holds:
- <name> is bound in $\lambda<$ name $_{1}>.<$ exp> if the identifier <name> $=<$ name $_{1}>$ or if <name> is bound in <exp>.
- <name> is bound in $E_{1} E_{2}$ if <name> is bound in E_{1} or if it is bound in E_{2}.

Free and Bound Variables

- The same identifier can occur free and bound in the same expression:

$$
(\lambda x . x z)(\lambda z . z)
$$

Substitutions

- In λ-calculus we do not give names to functions.
- To simplify the notation we will use capital letters, digits and other symbols as synonyms for some function definitions.
- For example I is a synonym for ($\lambda x . x$)

$$
\begin{gathered}
\| \equiv(\lambda x \cdot x)(\lambda x \cdot x) \\
\| \equiv(\lambda x \cdot x)(\lambda z \cdot z) \equiv 1
\end{gathered}
$$

Substitutions

- Avoid mixing up free occurrences of an identifier with bound ones.

$$
(\lambda x .(\lambda y \cdot x y)) y
$$

- Incorrect result is:
($\lambda \mathrm{y} . \mathrm{yy}$)
- Why?

Substitutions

- If the function λx.exp is applied to E, we substitute all free occurrences of x in exp with E.
- We rename the bound variable of the same name in exp before substitution.
- Variable names are only "placeholders" in λ calculus, they are not important.

Substitutions

$$
(\lambda x .(\lambda y \cdot(x(\lambda x . x y)))) y
$$

In this expression we associate the argument x with y. In the body:

$$
(\lambda y .(x(\lambda x . x y)))
$$

only first \boldsymbol{x} is free and can be substituted. Before substituting we rename the variable \boldsymbol{y} to avoid mixing its free and its bound occurrences.

$$
[y / x](\lambda t .(x(\lambda x . x t)))=(\lambda t .(y(\lambda x . x t)))
$$

Functions with Multiple Arguments

- How to represent functions with multiple arguments in λ-calculus?
- We do not need them.
- We can use currying to transform functions
- Given a function f of type: $(X \times Y) \longrightarrow Z$, currying it makes a function curry $(f): X \longrightarrow Y \longrightarrow Z$.

Arithmetic

- We expect from a programming language that it should be capable of doing arithmetical calculations.
- Numbers in λ-calculus can be represented as in Peano axioms starting from zero.
- suc(zero) to represent "1", suc(suc(zero)) to represent " 2 " and so on.

Arithmetic

- Zero can be represented as (入s.($\lambda z . z)$) or abbreviated ($\lambda s z . z$).
- Then we can define:

$$
\begin{gathered}
1 \equiv \lambda s z \cdot s(z) \\
2 \equiv \lambda s z \cdot s(s(z)) \\
3 \equiv \lambda s z \cdot s(s(s(z)))
\end{gathered}
$$

Successor Function

- The function applied to "0" returns "1", applied to "1" returns "2" and so on.

$$
S \equiv \lambda w y x . y(w y x)
$$

- This function applied to our representation of zero yields:

$$
\begin{gathered}
S 0 \equiv(\lambda w y x \cdot y(w y x))(\lambda s z . z) \\
\lambda y x \cdot y((\lambda s z . z) y x)=\lambda y x \cdot y((\lambda z . z) x)=\lambda y x \cdot y(x) \equiv 1 \\
S 1 \equiv(\lambda w y x . y(w y x))(\lambda s z . s(z))=\lambda y x \cdot y((\lambda s z . s(z)) y x)=\lambda y x \cdot y(y(x)) \equiv 2
\end{gathered}
$$

Addition

- Addition can be obtained immediately by noting that the body $s z$ of our definition of the number 1 .
- If we want to add say 2 and 3 , we just apply the successor function two times to 3.

$$
\begin{aligned}
& 2 S 3 \equiv(\lambda s z . s(s z))(\lambda w y x . y(w y x))(\lambda u v . u(u(u v))) \\
& (\lambda w y x . y((w y) x))((\lambda w y x . y((w y) x))(\lambda u v . u(u(u v)))) \equiv S S 3
\end{aligned}
$$

Multiplication

($\lambda x y z . x(y z))$
(入xyz.x(yz))22

Conditionals

- We define two functions True:

$$
T \equiv \lambda x y \cdot x
$$

- and False:

$$
F \equiv \lambda x y \cdot y
$$

Logical Operations

- The AND function of two arguments can be defined as

$$
\wedge \equiv \lambda x y \cdot x y(\lambda u v . v) \equiv \lambda x y . x y F
$$

- The OR function of two arguments can be defined as

$$
v \equiv \lambda x y \cdot x(\lambda u v . u) y \equiv \lambda x y . x T y
$$

- Negation of one argument can be defined as

$$
\neg \equiv \lambda x \cdot x(\lambda u v . v)(\lambda a b . a) \equiv \lambda x \cdot x F T
$$

- The negation function applied to "true" is

$$
\neg T \equiv \lambda x . x(\lambda u v . v)(\lambda a b . a)(\lambda c d . c)
$$

- which reduces to

$$
\text { TFT } \equiv(\lambda c d . c)(\lambda u v . v)(\lambda a b . a)=(\lambda u v . v) \equiv F
$$

Conditional Test

- It is very convenient in a programming language to have a function which is true if a number is zero and false otherwise.

$$
Z \equiv \lambda x \cdot x F \neg F
$$

- To understand how this function works, note that

$$
0 f a \equiv(\lambda s z . z) f a=a
$$

- that is, the function f applied zero times to the argument a yields a. On the other hand, F applied to any argument yields the identity function

$$
F a \equiv(\lambda x y \cdot y) a=\lambda y \cdot y \equiv 1
$$

Conditional Test

- We can now test if the function Z works correctly. The function applied to zero yields

$$
Z 0 \equiv(\lambda x . x F \neg F) 0=0 F \neg F=\neg F=T
$$

- because F applied 0 times to \neg yields \neg. The function Z applied to any other number N yields

$$
\mathrm{ZN} \equiv(\lambda x \cdot x F \neg F) N=N F \neg F
$$

- The function F is then applied N times to \neg. But F applied to anything is the identity, so that the above expression reduces for any number N greater than zero to

$$
I F=F
$$

Recursion

- Recursive functions can be defined in the λ calculus using a function which calls a function y and then regenerates itself. This can be better understood by considering the following function Y :

$$
Y \equiv(\lambda y \cdot(\lambda x \cdot y(x x))(\lambda x \cdot y(x x)))
$$

- This function applied to a function R yields:

$$
Y R=(\lambda x \cdot R(x x))(\lambda x \cdot R(x x))
$$

- which further reduced yields:

$$
R((\lambda x \cdot R(x x))(\lambda x \cdot R(x x))))
$$

- but this means that $Y R=R(Y R)$, that is, the function R is evaluated using the recursive call YR as the first argument.

